1,967 research outputs found
Optimizing evacuation flow in a two-channel exclusion process
We use a basic setup of two coupled exclusion processes to model a stylised
situation in evacuation dynamics, in which evacuees have to choose between two
escape routes. The coupling between the two processes occurs through one common
point at which particles are injected, the process can be controlled by
directing incoming individuals into either of the two escape routes. Based on a
mean-field approach we determine the phase behaviour of the model, and
analytically compute optimal control strategies, maximising the total current
through the system. Results are confirmed by numerical simulations. We also
show that dynamic intervention, exploiting fluctuations about the mean-field
stationary state, can lead to a further increase in total current.Comment: 16 pages, 6 figure
A refined Razumov-Stroganov conjecture II
We extend a previous conjecture [cond-mat/0407477] relating the
Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to
refined numbers of alternating sign matrices. By considering the O(1) loop
model on a semi-infinite cylinder with dislocations, we obtain the generating
function for alternating sign matrices with prescribed positions of 1's on
their top and bottom rows. This seems to indicate a deep correspondence between
observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf
macro
Relaxation rate of the reverse biased asymmetric exclusion process
We compute the exact relaxation rate of the partially asymmetric exclusion
process with open boundaries, with boundary rates opposing the preferred
direction of flow in the bulk. This reverse bias introduces a length scale in
the system, at which we find a crossover between exponential and algebraic
relaxation on the coexistence line. Our results follow from a careful analysis
of the Bethe ansatz root structure.Comment: 22 pages, 12 figure
Slowest relaxation mode of the partially asymmetric exclusion process with open boundaries
We analyze the Bethe ansatz equations describing the complete spectrum of the
transition matrix of the partially asymmetric exclusion process on a finite
lattice and with the most general open boundary conditions. We extend results
obtained recently for totally asymmetric diffusion [J. de Gier and F.H.L.
Essler, J. Stat. Mech. P12011 (2006)] to the case of partial symmetry. We
determine the finite-size scaling of the spectral gap, which characterizes the
approach to stationarity at large times, in the low and high density regimes
and on the coexistence line. We observe boundary induced crossovers and discuss
possible interpretations of our results in terms of effective domain wall
theories.Comment: 30 pages, 9 figures, typeset for pdflatex; revised versio
Finite-size left-passage probability in percolation
We obtain an exact finite-size expression for the probability that a
percolation hull will touch the boundary, on a strip of finite width. Our
calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and
the results are expressed in terms of symplectic characters. In the large size
limit, we recover the scaling behaviour predicted by Schramm's left-passage
formula. We also derive a general relation between the left-passage probability
in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the
open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure
Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon
The raise and peel model of a one-dimensional fluctuating interface (model A)
is extended by considering one source (model B) or two sources (model C) at the
boundaries. The Hamiltonians describing the three processes have, in the
thermodynamic limit, spectra given by conformal field theory. The probability
of the different configurations in the stationary states of the three models
are not only related but have interesting combinatorial properties. We show
that by extending Pascal's triangle (which gives solutions to linear relations
in terms of integer numbers), to an hexagon, one obtains integer solutions of
bilinear relations. These solutions give not only the weights of the various
configurations in the three models but also give an insight to the connections
between the probability distributions in the stationary states of the three
models. Interestingly enough, Pascal's hexagon also gives solutions to a
Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few
references are adde
A refined Razumov-Stroganov conjecture
We extend the Razumov-Stroganov conjecture relating the groundstate of the
O(1) spin chain to alternating sign matrices, by relating the groundstate of
the monodromy matrix of the O(1) model to the so-called refined alternating
sign matrices, i.e. with prescribed configuration of their first row, as well
as to refined fully-packed loop configurations on a square grid, keeping track
both of the loop connectivity and of the configuration of their top row. We
also conjecture a direct relation between this groundstate and refined totally
symmetric self-complementary plane partitions, namely, in their formulation as
sets of non-intersecting lattice paths, with prescribed last steps of all
paths.Comment: 20 pages, 4 figures, uses epsf and harvmac macros a few typos
correcte
Exact Ground State and Finite Size Scaling in a Supersymmetric Lattice Model
We study a model of strongly correlated fermions in one dimension with
extended N=2 supersymmetry. The model is related to the spin XXZ
Heisenberg chain at anisotropy with a real magnetic field on the
boundary. We exploit the combinatorial properties of the ground state to
determine its exact wave function on finite lattices with up to 30 sites. We
compute several correlation functions of the fermionic and spin fields. We
discuss the continuum limit by constructing lattice observables with well
defined finite size scaling behavior. For the fermionic model with periodic
boundary conditions we give the emptiness formation probability in closed form.Comment: 4 pages, 4 eps figure
Magnetization Plateaux in Bethe Ansatz Solvable Spin-S Ladders
We examine the properties of the Bethe Ansatz solvable two- and three-leg
spin- ladders. These models include Heisenberg rung interactions of
arbitrary strength and thus capture the physics of the spin- Heisenberg
ladders for strong rung coupling. The discrete values derived for the
magnetization plateaux are seen to fit with the general prediction based on the
Lieb-Schultz- Mattis theorem. We examine the magnetic phase diagram of the
spin-1 ladder in detail and find an extended magnetization plateau at the
fractional value in agreement with the experimental observation
for the spin-1 ladder compound BIP-TENO.Comment: 11 pages, 1 figur
- …