29 research outputs found

    Preclinical Evaluation of Ureidosulfamate Carbonic Anhydrase IX/XII Inhibitors in the Treatment of Cancers

    Get PDF
    Carbonic anhydrases (CAs) are a family of enzymes involved in the pH regulation of metabolically active cells/tissues. Upregulation of the CAIX/XII isoforms is associated with hypoxic tumours and clinically linked with malignant progression, treatment resistance and poor prognosis. The elucidation of the crystal structure of the catalytic domains of CAIX/XII provided the basis for the generation of CAIX/XII selective inhibitors based on the sulfonamide, sulfamate and coumarins chemical structures. Ureido-substituted benzenesulfonamide CAIX/XII inhibitors have shown significant potential, with U-104 (SLC-0111) currently present in clinical Phase I/II. Ureido-substituted sulfamate CAIX/XII inhibitors have received less attention despite encouraging preclinical test results. In triple-negative breast cancer (TNBC), ureidosulfamates revealed a significant antitumour (FC9-398A) and antimetastatic potential (S4). In small cell lung cancer (SCLC), a cancer cell type very sensitive to a dysregulation in CAIX signaling, S4 treatment was particularly effective when combined with cisplatin with no evidence of acquired cisplatin-resistance. These successful anticancer strategies should provide a solid basis for future studies on ureido-substituted sulfamates

    Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated Kinase-1

    Get PDF
    Background Expressed in embryonic development, matrix metalloprotein-9 (MMP-9) is absent in most of developed adult tissues, but recurs in inflammation during tissue injury, wound healing, tumor formation and metastasis. Expression of MMP-9 is tightly controlled by extracellular cues including pro-inflammatory cytokines and extracellular matrix (ECM). While the pathologic functions of MMP-9 are evident, the intracellular signaling pathways to control its expression are not fully understood. In this study we investigated mechanism of cytokine induced MMP-9 with particular emphasis on the role of p21-activated-kinase-1 (PAK1) and the down stream signaling. Results In response to TNF-alpha or IL-1alpha, PAK1 was promptly activated, as characterized by a sequential phosphorylation, initiated at threonine-212 followed by at threonine-423 in the activation loop of the kinase, in human skin keratinocytes, dermal fibroblasts, and rat hepatic stellate cells. Ectopic expression of PAK1 variants, but not p38 MAP kinase, impaired the TNF-alpha-induced MMP-9 expression, while other MMPs such as MMP-2, -3 and -14 were not affected. Activation of Jun N-terminal kinase (JNK) and NF-kappaB has been demonstrated to be essential for MMP-9 expression. Expression of inactive PAK1 variants impaired JNK but not NF-kappaB activation, which consequently suppressed the 5'-promoter activities of the MMP-9 gene. After the cytokine-induced phosphorylation, both ectopically expressed and endogenous PAK1 proteins were promptly accumulated even in the condition of suppressing protein synthesis, suggesting the PAK1 protein is stabilized upon TNF-alpha stimulation. Stabilization of PAK1 protein by TNF-alpha treatment is independent of the kinase catalytic activity and p21 GTPase binding capacities. In contrast to epithelial cells, mesenchymal cells require 3-dimensional type-I collagen in response to TNF-alpha to massively express MMP-9. The collagen effect is mediated, in part, by boost JNK activation in a way to cooperate the cytokine signaling. Conclusion We identified a novel mechanism for MMP-9 expression in response to injury signals, which is mediated by PAK1 activation and stabilization leading JNK activation

    A Novel Mechanism of Ataxia Telangiectasia Mutated Mediated Regulation of Chromatin Remodeling in Hypoxic Conditions

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-06-03, accepted 2021-08-31, epub 2021-09-21Publication status: PublishedThe effects of genotoxic stress can be mediated by activation of the Ataxia Telangiectasia Mutated (ATM) kinase, under both DNA damage-dependent (including ionizing radiation), and independent (including hypoxic stress) conditions. ATM activation is complex, and primarily mediated by the lysine acetyltransferase Tip60. Epigenetic changes can regulate this Tip60-dependent activation of ATM, requiring the interaction of Tip60 with tri-methylated histone 3 lysine 9 (H3K9me3). Under hypoxic stress, the role of Tip60 in DNA damage-independent ATM activation is unknown. However, epigenetic changes dependent on the methyltransferase Suv39H1, which generates H3K9me3, have been implicated. Our results demonstrate severe hypoxic stress (0.1% oxygen) caused ATM auto-phosphorylation and activation (pS1981), H3K9me3, and elevated both Suv39H1 and Tip60 protein levels in FTC133 and HCT116 cell lines. Exploring the mechanism of ATM activation under these hypoxic conditions, siRNA-mediated Suv39H1 depletion prevented H3K9me3 induction, and Tip60 inhibition (by TH1834) blocked ATM auto-phosphorylation. While MDM2 (Mouse double minute 2) can target Suv39H1 for degradation, it can be blocked by sirtuin-1 (Sirt1). Under severe hypoxia MDM2 protein levels were unchanged, and Sirt1 levels depleted. SiRNA-mediated depletion of MDM2 revealed MDM2 dependent regulation of Suv39H1 protein stability under these conditions. We describe a novel molecular circuit regulating the heterochromatic state (H3K9me3 positive) under severe hypoxic conditions, showing that severe hypoxia-induced ATM activation maintains H3K9me3 levels by downregulating MDM2 and preventing MDM2-mediated degradation of Suv39H1. This novel mechanism is a potential anti-cancer therapeutic opportunity, which if exploited could target the hypoxic tumor cells known to drive both tumor progression and treatment resistance

    Carbonic anhydrase IX as a target for metastatic disease

    No full text
    Metastatic disease is responsible for the majority of cancer related deaths. Tumour-associated carbonic anhydrase IX (CA IX) is a powerful marker to diagnose various types of metastatic cancers including those of cervical, renal, breast and head & neck origin. The precise prognostic role of CA IX in determining local control versus overall survival is complex, although the majority of reports favour CA IX as a marker for poor prognosis in patients with metastatic cancer. Preclinical studies in cell cultures clearly demonstrate that CA IX stimulates features that enhance metastatic properties of cancer cells for example, reducing cell adhesion, increasing motility and migration, inducing vascularisation and activating proteases, in which CA IX-induced acidification of the microenvironment of the tumour is essential. As most findings are consistent with the idea that CA IX is important in metastatic dissemination, small molecular CA IX inhibitors (including fluorescent-tagged or radiolabelled) and monoclonal antibodies targeting the CA IX isoform have been developed. Studies in tumour xenograft models showed that these CA IX-specific inhibitors and antibodies can be very effective in therapy and imaging of a variety of different metastatic cancers

    Interleukin-1 participates in the progression from liver injury to fibrosis

    No full text
    Interleukin-1 (IL-1) is rapidly expressed in response to tissue damage; however, its role in coordinating the progression from injury to fibrogenesis is not fully understood. Liver fibrosis is a consequence of the activation of hepatic stellate cells (HSCs), which reside within the extracellular matrix (ECM) of subsinusoids. We have hypothesized that, among the hepatic inflammatory cytokines, IL-1 may directly activate HSCs through autocrine signaling and stimulate the matrix metalloproteinases (MMPs) produced by HSCs within the space of Disse, resulting in liver fibrogenesis. In this study, we first established a temporal relationship between IL-1, MMPs, HSC activation, and early fibrosis. The roles of IL-1 and MMP-9 in HSC activation and fibrogenesis were determined by mice deficient of these genes. After liver injury, IL-1, MMP-9, and MMP-13 levels were found to be elevated before the onset of HSC activation and fibrogenesis. IL-1 receptor-deficient mice exhibited ameliorated liver damage and reduced fibrogenesis. Similarly, advanced fibrosis, as determined by type-I and -III collagen mRNA expression and fibrotic septa, was partially attenuated by the deficiency of IL-1. In the early phase of liver injury, the MMP-9, MMP-13, and TIMP-1 expression correlated well with IL-1 levels. In injured livers, MMP-9 was predominantly colocalized to desmin-positive cells, suggesting that HSCs are MMP-producing cells in vivo. MMP-9-deficient mice were partially protected from liver injury and HSC activation. Thus IL-1 is an important participant, along with other cytokines, and controls the progression from liver injury to fibrogenesis through activation of HSCs in vivo

    Fibrosis and Cirrhosis Reversibility – Molecular Mechanisms

    No full text
    The concept that liver fibrosis is a dynamic process with potential for regression as well as progression has emerged in parallel with clinical evidence for remodeling of fibrotic extracellular matrix in patients who can be effectively treated for their underlying cause of liver disease. This article reviews recent discoveries relating to the cellular and molecular mechanisms that regulate fibrosis regression, with emphasis on studies that have used experimental in vivo models of liver disease. Apoptosis of hepatic myofibroblasts is discussed. The functions played by transcription factors, receptor-ligand interactions, and cell-matrix interactions as regulators of the lifespan of hepatic myofibroblasts are considered, as are the therapeutic opportunities for modulating these functions. Growth factors, proteolytic enzymes, and their inhibitors are discussed in detail

    Stereological measurement of porto-central gradients in gene expression in mouse liver

    No full text
    The liver is thought to consist of lobules, numerous repeating, randomly oriented units. Within these lobules, genes are expressed in gradients along the porto‐central axis, which spans the distance between portal and central veins. We have developed a robust stereological method to map all points in an image to their position on this porto‐central axis. This approach is based on the distribution of well‐characterized periportal and pericentral enzymes, which are visualized on sections preceding and following the section of interest. Because expression of the model genes phosphoenolpyruvate carboxykinase and ornithine aminotransferase declines gradually with increasing distance from the portal vein and central vein, respectively, these genes can be used to prepare images with topographical information without any assumption about the shape of the hepatic unit, or about the direction or shape of the gradient to be determined. The “relative distance” image is a 2‐dimensional image that accurately maps the relative position of hepatocytes on the porto‐central axis in 3‐dimensional space. It is superimposed on the serial section under investigation to relate local staining density to position on the porto‐central axis and obtain the gene expression gradient. The method was used to determine the expression gradient of 2 periportal and 2 pericentral enzymes and their response to fasting. The “total distance” image was used to measure the length of the porto‐central axis, which was approximately 210 μm in mice and found to decrease 13% after 1 day of starvation. The method can be applied to any tissue component that can be stained quantitatively

    Dissemination via the lymphatic or angiogenic route impacts the pathology, microenvironment and hypoxia-related drug response of lung metastases

    No full text
    Complications associated with the development of lung metastases have a detrimental effect on the overall survival rate of many cancer patients. Preclinical models that mimic the clinical aspects of lung metastases are an important tool in developing new therapy options for these patients. The commonly used intravenous models only recapitulate dissemination of cancer cells to the lungs via the haematological route. Here we compared spontaneous and intravenous lung metastases of the highly metastatic KHT mouse fibrosarcoma cells after injecting KHT cells into the subcutaneous layer of the skin or directly into the tail vein. In contrast to the intravenous model, metastases spontaneously arising from the subcutaneous tumours disseminated most consistent with the lymph nodes/lymphatics route and were more hypoxic than the metastases observed following tail-vein administration and haematological spread. To ascertain whether this impacted on drug response, we tested the effectiveness of the hypoxia-sensitive cytotoxin AQ4N (Banoxantrone) in both models. AQ4N was more effective as an anti-metastatic drug in mice with subcutaneous KHT tumours, significantly reducing the metastatic score. Complementing the KHT studies, pathology studies in additional models of spontaneous lung metastases showed haematological (HCT116 intrasplenic implant) or mixed haematological/lymphatic (B16 intradermal implant) spread. These data suggest that preclinical models can demonstrate differing, clinically relevant dissemination patterns, and that careful selection of preclinical models is required when evaluating new strategies for targeting metastatic disease

    Tumor necrosis factor-alpha induced expression of matrix metalloproteinase-9 through p21-activated Kinase-1

    No full text
    Abstract Background Expressed in embryonic development, matrix metalloprotein-9 (MMP-9) is absent in most of developed adult tissues, but recurs in inflammation during tissue injury, wound healing, tumor formation and metastasis. Expression of MMP-9 is tightly controlled by extracellular cues including pro-inflammatory cytokines and extracellular matrix (ECM). While the pathologic functions of MMP-9 are evident, the intracellular signaling pathways to control its expression are not fully understood. In this study we investigated mechanism of cytokine induced MMP-9 with particular emphasis on the role of p21-activated-kinase-1 (PAK1) and the down stream signaling. Results In response to TNF-alpha or IL-1alpha, PAK1 was promptly activated, as characterized by a sequential phosphorylation, initiated at threonine-212 followed by at threonine-423 in the activation loop of the kinase, in human skin keratinocytes, dermal fibroblasts, and rat hepatic stellate cells. Ectopic expression of PAK1 variants, but not p38 MAP kinase, impaired the TNF-alpha-induced MMP-9 expression, while other MMPs such as MMP-2, -3 and -14 were not affected. Activation of Jun N-terminal kinase (JNK) and NF-kappaB has been demonstrated to be essential for MMP-9 expression. Expression of inactive PAK1 variants impaired JNK but not NF-kappaB activation, which consequently suppressed the 5'-promoter activities of the MMP-9 gene. After the cytokine-induced phosphorylation, both ectopically expressed and endogenous PAK1 proteins were promptly accumulated even in the condition of suppressing protein synthesis, suggesting the PAK1 protein is stabilized upon TNF-alpha stimulation. Stabilization of PAK1 protein by TNF-alpha treatment is independent of the kinase catalytic activity and p21 GTPase binding capacities. In contrast to epithelial cells, mesenchymal cells require 3-dimensional type-I collagen in response to TNF-alpha to massively express MMP-9. The collagen effect is mediated, in part, by boost JNK activation in a way to cooperate the cytokine signaling. Conclusion We identified a novel mechanism for MMP-9 expression in response to injury signals, which is mediated by PAK1 activation and stabilization leading JNK activation.</p
    corecore