193 research outputs found

    Black holes in the quantum universe

    Full text link
    A succinct summary is given of the problem of reconciling observation of black hole-like objects with quantum mechanics. If quantum black holes behave like subsystems, and also decay, their information must be transferred to their environments. Interactions that accomplish this with `minimal' departure from a standard description are parameterized. Possible sensitivity of gravitational wave or very long baseline interferometric observations to these interactions is briefly outlined.Comment: 11 pages + ref

    Modulated Hawking radiation and a nonviolent channel for information release

    Get PDF
    Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein-Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.Comment: 10 pages of text + refs. v2: cleaner figure. v3: minor updates to match published versio

    Hawking radiation, the Stefan-Boltzmann law, and unitarization

    Full text link
    Where does Hawking radiation originate? A common picture is that it arises from excitations very near or at the horizon, and this viewpoint has supported the "firewall" argument and arguments for a key role for the UV-dependent entanglement entropy in describing the quantum mechanics of black holes. However, closer investigation of both the total emission rate and the stress tensor of Hawking radiation supports the statement that its source is a near-horizon quantum region, or "atmosphere," whose radial extent is set by the horizon radius scale. This is potentially important, since Hawking radiation needs to be modified to restore unitarity, and a natural assumption is that the scales relevant to such modifications are comparable to those governing the Hawking radiation. Moreover, related discussion suggests a resolution to questions regarding extra energy flux in "nonviolent" scenarios, that does not spoil black hole thermodynamics as governed by the Bekenstein-Hawking entropy.Comment: 7 pages + references. v2: references added, v3: minor typos corrected. To appear in Physics Letter
    corecore