12 research outputs found

    Additional file 1: Figure S1. of Subventricular zone neural progenitors reverse TNF-alpha effects in cortical neurons

    No full text
    AM251 treatment has no effect on synaptic activity, cell viability and CB1 receptor expression. A Representative electrophysiological traces and group data of average mEPSC amplitude and frequency of control (n = 10) and AM 251 treated (n = 9) cells (scale bar: 20 pA, 200 ms). B Fluorescence images of Hoechst and propidium iodide double staining in cortical neurons and summary bar graph showing lack of cytotoxic effects after AM251 treatment (scale bar: 40 μm). C, D Confocal microscopy images and summary bar graph showing expression of CB1 receptors in control and AM251 treated cultured neurons (scale bar: 20 μm). All data are expressed as mean ± standard error of the mean. CB1 type 1 cannabinoid receptor, mEPSC miniature excitatory post-synaptic current. (PPT 1143 kb

    Additional file 1: Figure S1. of IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo

    No full text
    Gene expression of typical M1 and M2 markers in peritoneal macrophages stimulated in vitro. (A–D) real-time RT-PCR for iNOS, Ym1, CCI17, and iL6, in non stimulated (NS), and in macrophages stimulated with different doses of iFn-γ (m1) and iL4 (M2). Gapdh has been used as a housekeeping gene. Data are shown as fold induction (Fi ± standard deviation) over NS. (TIF 42402 kb

    Additional file 6: of Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

    No full text
    Movie S2 Video of Catwalk gait analysis of a representative GCV-NestinTK mouse. NestinTK mice were treated with GCV, subjected to SCI and followed for locomotor recovery by BMS score when behavioral amelioration reached a plateau value, mice were subjected to Catwalk gait analysis. The video shows recording of a representative GCV-NestinTK animal (BMS score = 1). Free ambulation along an illuminated glass plate in a darkened room has been recorded for 3.22 s. Video has been captured at day 18 after SCI. (AVI 104621 kb

    Additional file 8: of Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

    No full text
    Figure S6. Upregulation of inflammatory cues in GCV-NestinTK mice. Real-time PCR analysis of pro-inflammatory genes (A–D) in T11–T13 spinal cord tissues at different time points after the injury induction. GCV-NestinTK mice (red bars) have a increased expression of pro-inflammatory genes after injury compared with control mice (blue bars). Values indicate mean fold changes ± S.E.M (n = 3–6 for each group). Comparisons were done using the t Student test: TNFα:* p = 0.021; IL-1β:* p = 0.046; Vegfa: p = 0.008. (TIFF 7997 kb

    Additional file 5: of Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

    No full text
    Movie S1 Video of Catwalk gait analysis of a representative GCV- WT mouse. WT mice were treated with GCV, subjected to SCI and followed for locomotor recovery by BMS score when behavioral amelioration reached a plateau value mice, were subjected to Catwalk gait analysis. The video shows recording of a representative GCV-WT animal (BMS score = 3). Free ambulation along an illuminated glass plate in a darkened room has been recoded for 4.30 s. Video has been captured at day 18 after SCI. (AVI 139494 kb

    Additional file 7: of Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

    No full text
    Figure S5. macrophages/macrophages activation affects both GCV-WT and GCV-NestinTK mice. (A) Histological analysis of a SC region located 3 mm far from the injury site from a GCV-WT mice (18 days post injury). Microglia/macrophages are labeled for Iba1 and F4/80. Arrowhead indicates cells that are shown at high magnification in panel A’. Panel B shows the site of the injury in the SC of GCV-WT mouse. Arrowhead indicates cells that are shown at high magnification in panel B′. A representative section of the SC located 3 mm far from the site of the injury from a GCV-NestinTK mouse (18 days post injury) is shown in panel C. Arrowhead indicates cells that are shown at high magnification in panel C′. Panel D shows the site of the injury while the arrowhead indicates cells that are shown at high magnification in D’ (n = 3 for each group). Scale bar 50 μm (TIFF 4124 kb

    Additional file 3: of Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

    No full text
    Figure S3. GCV treatment ablates proliferating SC-eNSCs in NestinTK mice. Panels A and B show representative confocal images of VIM (red) and Brdu (green) in the ependymal layer of GCV-WT (A) and GCV-NestinTK (B) mice (n = 3 for each group). Mice were sacrificed at the end of the GCV treatment. Quantifications (means ± S.E.M.) are shown in panel C. Two-way ANOVA followed by Bonferroni’s multiple Comparison test has been used to analyze data. ** p = 0.011 and p = 0.045 in thoracic and lumbar segments, respectively. Scale bar 20 μm. (TIFF 2754 kb

    Additional file 2: of Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury

    No full text
    Figure S2. Sorted GFP+ cells from Nestin floxGFPflox-TK mice give rise to neurospheres. Panel A and B show the gating strategy for sorting GFP+ cells from SCs bulk cultures obtained from Nestin floxGFPflox-TK mice. WT litters (A) were used to set up the gating strategy that we used to sort GFP+ cells (B). GFP+ cells were plated at the density of 8000 cells/cm2 and daily examined for the presence of neurospheres. Small spheres were observed after 3 days (C), while spheres with diameters larger than 100 μm were easily observed after 7 days (D). Scale bar 50 μm (n = 3 independent preparations). (TIFF 9717 kb

    FoxP3<sup>+</sup>CD39<sup>+</sup> Treg cells are increased during acute MS.

    No full text
    <p>Scatter plots from three representative subjects, one healthy donor (HC; <b>A</b>), a stable MS patients (<b>B</b>), and a patient experiencing a clinical re-exacerbation of MS (<b>C</b>) are shown, indicating that the FoxP3/CD39 double positive T cell population (<b>A</b>, right panel) in the CD25<sup>high</sup> gate dramatically decreases during stable MS (<b>B</b>, right panel) and is restored during an acute attack (<b>C</b>, right panel).</p
    corecore