4 research outputs found
Recommended from our members
Oceanic phosphorus imbalance : magnitude of the mid-ocean ridge flank hydrothermal sink
We present a new estimate for the crustal phosphorous sink that results from reactions among seawater, basalt, and sediment blanketing low temperature mid-ocean ridge flank hydrothermal systems. New estimates for global hydrothermal power output, sediment thickness, and the dissolved phosphate concentrations in basement formation fluids indicate that fluid flow through ridge flanks removes 2.8 x 10¹⁰ mol P yr⁻¹. This value is larger (130%) than the riverine dissolved flux of inorganic phosphate and is as much as 35% of the sedimentary P sink. The concordant seawater flux (2.1 x 10¹⁶ kg yr⁻¹) is 65% of the riverine fluid flux and circulates a fluid volume equivalent to the entire ocean in about 70,000 yr. Additional sampling of seafloor springs is required to further constrain the range of calculated phosphate fluxes; nevertheless the modern phosphorus budget is clearly unbalanced with total sinks outpacing sources.Keywords: Ocean Drilling Program, geochemical cycles, ridge flank, phosphate, hydrotherma
(Table 2) Composition of the deapest pore fluids from ODP Holes 168-1030B and 168-1031A
On the eastern flank of the Juan de Fuca Ridge, reaction between upwelling basement fluid and sediment alters hydrothermal fluxes of Ca, SiO2(aq), SO4, PO4, NH4, and alkalinity. We used the Global Implicit Multicomponent Reactive Transport (GIMRT) code to model the processes occurring in the sediment column (diagenesis, sediment burial, fluid advection, and multicomponent diffusion) and to estimate net seafloor fluxes of solutes. Within the sediment section, the reactions controlling the concentrations of the solutes listed above are organic matter degradation via SO4 reduction, dissolution of amorphous silica, reductive dissolution of amorphous Fe(III)-(hydr)oxide, and precipitation of calcite, carbonate fluorapatite, and amorphous Fe(II)-sulfide. Rates of specific discharge estimated from pore-water Mg profiles are 2 to 3 mm/yr. At this site the basement hydrothermal system is a source of NH4, SiO2(aq), and Ca, and a sink of SO4, PO4, and alkalinity. Reaction within the sediment column increases the hydrothermal sources of NH4 and SiO2(aq), increases the hydrothermal sinks of SO4 and PO4, and decreases the hydrothermal source of Ca. Reaction within the sediment column has a spatially variable effect on the hydrothermal flux of alkalinity.
Because the model we used was capable of simulating the observed pore-water chemistry by using mechanistic descriptions of the biogeochemical processes occurring in the sediment column, it could be used to examine the physical controls on hydrothermal fluxes of solutes in this setting. Two series of simulations in which we varied fluid flow rate (1 to 100 mm/yr) and sediment thickness (10 to 100 m) predict that given the reactions modeled in this study, the sediment section will contribute most significantly to fluxes of SO4 and NH4 at slow flow rates and intermediate sediment thickness and to fluxes of SiO2(aq) at slow flow rates and large sediment thickness. Reaction within the sediment section could approximately double the hydrothermal sink of PO4 over a range of flow rates and sediment thickness, and could slightly decrease (by </=10%) the size of the hydrothermal source of Ca