511 research outputs found
Defensive Weapons and Star Wars: A Supergame with Optimal Punishments
We model the perspective faced by nuclear powers involved in a supergame where nuclear deterrence is used to stabilise peace. This setting allows us to investigate the bearings of defensive weapons on the effectiveness of deterrence and peace stability, relying on one-shot optimal punishments. We find that the sustainability of peace is unaffected by defensive shields if both countries have them, while a unilateral endowment of such weapons has destabilising consequences.
Liquid and vapour phase of lavandin (Lavandula Ă— intermedia) essential oil: chemical composition and antimicrobial activity
Essential oils from Lavandula genus and the obtained hybrids are widely used for different purposes such as perfume production in the cosmetic field and for its biological properties. This is the first study on the liquid and vapour phase of Lavandula × intermedia “Grosso” essential oil grown in the Lazio Region, Italy, investigated using headspace coupled to gas chromatography and mass spectrometry (HS-GC/MS). The results showed the most abundant components were linalool and linalyl acetate, followed by 1,8-cineole and terpinen-4-ol, while lavandulyl acetate and borneol were identified as minor compounds, maintaining the same proportion in both the liquid and vapour phase. Furthermore, we tested lavandin liquid and vapour phase essential oil on gram-negative bacteria (Escherichia coli, Acinetobacter bohemicus, and Pseudomonas fluorescens) and gram-positive bacteria (Bacillus cereus and Kocuria marina)
Heterotopic Pregnancy, It is Such a Rare Finding?
Heterotopic pregnancy is a multiple pregnancy with simultaneous implantation of the embryos at two or more distinct locations. Risk factors, epidemiology, signs, symptoms, sonographic findings and management options are reviewed. Literature data indicates an increase of the prevalence of heterotopic pregnancy and a trend increase toward sonographic diagnosis at an earlier stage, before rupture. In order to facilitate early diagnosis, the dictum “think heterotopic” is never overemphasized also in the sonographic evi- dence for an intrauterine pregnancy. Diagnostic vigilance is particularly recommended in in-vitro fertilization with multiple embryo transfer even in the case of intrauterine twin visualization. Finally management options are examined
Increasing resilience to cascading events: The M.OR.D.OR. scenario
The growing complexity of global interconnected risk suggests that a shift has occurred in the way emergency planners need to improve preparedness and response to cascading events. With reference to the literature from the physical, social and political sciences, this paper analyses extreme space weather events and cyberattacks. The goal of this work is to produce a replicable scenario-building process, based on cross-disciplinary understanding of vulnerability, that could be complementary to probabilistic hazard assessment. Our hypothesis is that the technological and human component of critical infrastructure could be the primary vector for the escalation of secondary emergencies. While not themselves having direct implications in terms of loss of life, elements that are common to different risks could provide particular challenges for disaster management. Our findings identify some vulnerable nodes, such as Global Navigation Satellite System technology and remote-control systems, that could act as paths for the escalations of events. We suggest that these paths may be common to various known and unknown threats. We propose two scenarios of Massive, OveRwhelming Disruption of OpeRations (M.OR.D.OR.) that could be used for testing emergency preparedness strategies, and increasing the response to highly complex, unknown events. The conclusions highlight the open challenges of seeking to increase societal resilience. The limitations of this work are described, as are the possible challenges for future research
Experimental study aimed at highlighting warnings for proper design, construction and control of geocomposite-reinforced asphalt pavements
The proper use of interlayers in asphalt pavements can be an effective and economic option to enhance their service life. However, the presence of a foreign element at the interface should be properly taken into account during design, construction and control of reinforced pavements. Given this background, the present laboratory study investigated stiffness and interface bonding properties of reinforced asphalt systems in order to achieve fundamental information for a correct design as well as proper construction and control of reinforced pavements. To accomplish this objective, different composite reinforcements (grids/fabrics embedded in bituminous membranes) were studied as interlayers of double-layered systems prepared with both traditional and polymer-modified asphalt concretes. Dynamic flexural tests and static interface shear tests were carried out. Unreinforced reference systems was also studied for comparison purposes. Results confirmed the abovementioned warnings that will allow delineating some preliminary guidelines related to the use of reinforcements in pavements
Aesthetic and Mechanical Suitability of a Clear Synthetic Resin as a Unconventional Binder for Road Pavements
Current environmental awareness interests several aspects of civil engineering, including road construction. Indeed, new challenges related to environmental pollution and landscape preservation must be faced. In this sense, clear road pavement surfaces represent an effective technology aimed at guaranteeing environmental-friendly aesthetic pavements. The use of clear synthetic resin as a binder involves several benefits for the mitigation of in-service reached temperatures and the heat distribution within pavements (with appreciable effects on pavement mechanical performance too). The present paper illustrates an experimental study aimed at analysing the chromatic and mechanical properties of a clear synthetic resin and thus its suitability as a binder for road pavement mixes. Chromatic characteristics were assessed through digital image analysis at different aging conditions. A dynamic shear rheometer was used to evaluate the linear viscoelastic properties as well as fatigue and rutting potential of the binder in a wide range of temperatures and frequencies. A conventional 35/50 penetration grade bitumen was also investigated for comparison purposes. The clear resin exhibited limited changes in colour (darkening effects), mainly in the case of short-term aging. On the other hand, a low temperature-dependency of such a binder was observed up to 58\ub0C. Slightly increased aptitude to rutting at the higher temperatures was detected, even if it is worth noting that clear in-service mixtures would achieve lower temperatures than traditional "black" materials at a given environmental condition (air temperature, solar radiation, etc.). The resin also exhibited a softer behaviour, along with an enhanced fatigue resistance. Overall, the studied innovative binder showed promising results in view of its effective use in road paving
Steel slag as valuable aggregate in eco\u2013friendly mixtures for asphalt pavements
Research and application concerning the use of environmentally friendly materials and technologies in road pavements have reached high relevance mainly due to the increasing public consciousness addressed to environmental protection and preservation. In this sense, the possible use of steel slags for construction applications (including road pavements) has a strategic importance to convert a waste into a valuable resource, taking also into account that ferrous slag may have a lower potential to negatively impact the environment. The environmental sustainability of asphalt mixtures prepared with steel slags can be further enhanced adopting the so-called Warm Mix Asphalt (WMA) technology. In fact, WMA is an asphalt concrete modified with additives that can be produced and applied at lower temperatures than the traditional Hot Mix Asphalt (HMA), thus reducing energy consumption, gas and fume emissions. Given this background, the paper illustrates a part of a wide research study aimed at verifying the utilization feasibility of steel slags in warm asphalt concretes. In particular, midrange and high-service temperature properties as well as water susceptibility of warm mixtures containing steel slags were assessed in the laboratory. The warm modification was performed using a chemical tensoactive additive, whereas slags were taken from a metallurgical plant equipped with an electric arc furnace (EAF). A WMA prepared with only natural aggregates was also studied for comparison purpose. The performance characterization was carried out through both static and cyclic laboratory tests. The results mainly showed that asphalt mixtures prepared combining chemical warm technology and EAF steel slag aggregates demonstrate promising field applicability
Early thromboelastography in acute traumatic coagulopathy: an observational study focusing on pre-hospital trauma care
Background: Major brain injury and uncontrolled blood loss remain the primary causes of early trauma-related mortality. One-quarter to one-third of trauma patients exhibit trauma-induced coagulopathy (TIC). Thromboelastometry (ROTEM) and thrombelastography (TEG) are valuable alternatives to standard coagulation testing, providing a more comprehensive overview of the coagulation process. Purpose: Evaluating thromboelastographic profile, the incidence of fibrinolysis (defined as Ly30 > 3%) in severe trauma patients, and factors influencing pathological coagulation pattern. Methods: Prospective observational 2\ua0years cohort study on severe trauma patients assisted by Helicopter Emergency Medical System (HEMS) and Level 1 Trauma Center, in a tertiary referral University Hospital. Results: Eighty three patients were enrolled, mean NISS (new injury severity score) 36 (\ub1 13). Mean R value decreased from 7.25 (\ub1 2.6) to 6.19 (\ub1 2.5) min (p 40 groups, changes in R value increased their significance (p = 0.04 and p < 0.03, respectively). Pathological TEG was found in 71 (88.8%) patients at T0 and 74 (92.5%) at T1. Hypercoagulation was present in 57 (71.3%) patients at T0, and in 66(82.5%) at T1. 9 (11.3%) patients had hyperfibrinolysis at T0, 7 (8.8%) patients at T1. Prevalence of StO2 < 75% at T0 was greater in patients whose TEG worsened (7 patients, 46.7%) against whose TEG remained stable or improved (8 patients, 17.4%) from T0 to T1 (p = 0.02). 48 (57.8%) patients received < 1000\ua0mL of fluids, while 35 (42.2%) received 65 1000\ua0mL. The first group had fewer patients with hypercoagulation (20, 41.6%) than the second (6, 17.6%) at T1 (p < 0.03). No differences were found for same TEG pattern at T0, nor other TEG pattern. Conclusion: Our population is representative of a non-hemorrhagic severe injury subgroup. Almost all of our trauma population had coagulation abnormalities immediately after the trauma; pro-coagulant changes were the most represented regardless of the severity of injury. NISS appears to affect only R parameter on TEG. Hyperfibrinolysis has been found in a low percentage of patients. Hypoperfusion parameters do not help to identify patients with ongoing coagulation impairment. Small volume resuscitation and mild hypotermia does not affect coagulation, at least in the early post-traumatic phase
Isotopic tracing of glucose metabolites in human monocytes to assess changes in inflammatory conditions
Differences in metabolic profiles can link to functional changes of immune cells in disease conditions. Here, we detail a protocol for the detection and quantitation of 19 metabolites in one analytical run. We provide the parameters for chromatographic separation and mass spectrometric analysis of isotopically labeled and unlabeled metabolites. We include steps for incubation and sample preparation of PBMCs and monocytes. This protocol overcomes the chromatographic challenges caused by the chelating properties of some metabolites
- …