113 research outputs found

    Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling.

    Get PDF
    Although PI3Kγ has been extensively investigated in inflammatory and cardiovascular diseases, the exploration of its functions in the brain is just at dawning. It is known that PI3Kγ is present in neurons and that the lack of PI3Kγ in mice leads to impaired synaptic plasticity, suggestive of a role in behavioral flexibility. Several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), involve an impairment of behavioral flexibility. Here, we found a previously unreported expression of PI3Kγ throughout the noradrenergic neurons of the locus coeruleus (LC) in the brainstem, serving as a mechanism that regulates its activity of control on attention, locomotion and sociality. In particular, we show an unprecedented phenotype of PI3Kγ KO mice resembling ADHD symptoms. PI3Kγ KO mice exhibit deficits in the attentive and mnemonic domains, typical hyperactivity, as well as social dysfunctions. Moreover, we demonstrate that the ADHD phenotype depends on a dysregulation of CREB signaling exerted by a kinase-independent PI3Kγ-PDE4D interaction in the noradrenergic neurons of the locus coeruleus, thus uncovering new tools for mechanistic and therapeutic research in ADHD

    Metabolic Aspects of Anthracycline Cardiotoxicity

    Get PDF
    Heart failure (HF) is increasingly recognized as the major complication of chemotherapy regimens. Despite the development of modern targeted therapies such as monoclonal antibodies, doxorubicin (DOXO), one of the most cardiotoxic anticancer agents, still remains the treatment of choice for several solid and hematological tumors. The insurgence of cardiotoxicity represents the major limitation to the clinical use of this potent anticancer drug. At the molecular level, cardiac side effects of DOXO have been associated to mitochondrial dysfunction, DNA damage, impairment of iron metabolism, apoptosis, and autophagy dysregulation. On these bases, the antioxidant and iron chelator molecule, dexrazoxane, currently represents the unique FDA-approved cardioprotectant for patients treated with anthracyclines.A less explored area of research concerns the impact of DOXO on cardiac metabolism. Recent metabolomic studies highlight the possibility that cardiac metabolic alterations may critically contribute to the development of DOXO cardiotoxicity. Among these, the impairment of oxidative phosphorylation and the persistent activation of glycolysis, which are commonly observed in response to DOXO treatment, may undermine the ability of cardiomyocytes to meet the energy demand, eventually leading to energetic failure. Moreover, increasing evidence links DOXO cardiotoxicity to imbalanced insulin signaling and to cardiac insulin resistance. Although anti-diabetic drugs, such as empagliflozin and metformin, have shown interesting cardioprotective effects in vitro and in vivo in different models of heart failure, their mechanism of action is unclear, and their use for the treatment of DOXO cardiotoxicity is still unexplored.This review article aims at summarizing current evidence of the metabolic derangements induced by DOXO and at providing speculations on how key players of cardiac metabolism could be pharmacologically targeted to prevent or cure DOXO cardiomyopathy

    Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases

    Get PDF
    Background-Hemolytic diseases are characterized by enhanced intravascular hemolysis resulting in heme-catalyzed reactive oxygen species generation, which leads to endothelial dysfunction and oxidative damage. Hemopexin (Hx) is a plasma heme scavenger able to prevent endothelial damage and tissue congestion in a model of heme overload. Here, we tested whether Hx could be used as a therapeutic tool to counteract heme toxic effects on the cardiovascular system in hemolytic diseases. Methods and Results\u2014By using a model of heme overload in Hx-null mice, we demonstrated that heme excess in plasma, if not bound to Hx, promoted the production of reactive oxygen species and the induction of adhesion molecules and caused the reduction of nitric oxide availability. Then, we used \u3b2-thalassemia and sickle cell disease mice as models of hemolytic diseases to evaluate the efficacy of an Hx-based therapy in the treatment of vascular dysfunction related to heme overload. Our data demonstrated that Hx prevented heme-iron loading in the cardiovascular system, thus limiting the production of reactive oxygen species, the induction of adhesion molecules, and the oxidative inactivation of nitric oxide synthase/nitric oxide, and promoted heme recovery and detoxification by the liver mainly through the induction of heme oxygenase activity. Moreover, we showed that in sickle cell disease mice, endothelial activation and oxidation were associated with increased blood pressure and altered cardiac function, and the administration of exogenous Hx was found to almost completely normalize these parameters. Conclusions-Hemopexin treatment is a promising novel therapy to protect against heme-induced cardiovascular dysfunction in hemolytic disorders

    Contractile Function during Angiotensin-II Activation:Increased Nox2 Activity Modulates Cardiac Calcium Handling via Phospholamban Phosphorylation

    Get PDF
    AbstractBackgroundRenin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function.ObjectivesThis study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation.MethodsWe generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding.ResultsChronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice.ConclusionsWe identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation

    Metabolic Alterations in a Slow-Paced Model of Pancreatic Cancer-Induced Wasting

    Get PDF
    Cancer cachexia is a devastating syndrome occurring in the majority of terminally ill cancer patients. Notably, skeletal muscle atrophy is a consistent feature affecting the quality of life and prognosis. To date, limited therapeutic options are available, and research in the field is hampered by the lack of satisfactory models to study the complexity of wasting in cachexia-inducing tumors, such as pancreatic cancer. Moreover, currently used in vivo models are characterized by an explosive cachexia with a lethal wasting within few days, while pancreatic cancer patients might experience alterations long before the onset of overt wasting. In this work, we established and characterized a slow-paced model of pancreatic cancer-induced muscle wasting that promotes efficient muscular wasting in vitro and in vivo. Treatment with conditioned media from pancreatic cancer cells led to the induction of atrophy in vitro, while tumor-bearing mice presented a clear reduction in muscle mass and functionality. Intriguingly, several metabolic alterations in tumor-bearing mice were identified, paving the way for therapeutic interventions with drugs targeting metabolism
    corecore