195 research outputs found

    Nonlinear numerical analysis of ship impact on lock gates

    Full text link
    This paper focuses on ship impact analysis on lock gate. First, the lock gate structure is determined by an elastic design and optimization process. Then, a nonlinear numerical analysis by finite elements is conducted to study the response of the lock gate in case of ship impact. It is shown that the elastically optimized structure is not able to resist significant impacts, because of the buckling of its reinforcement elements; the gate is thus reinforced. Finally, several ship impact analyses are conducted on the reinforced gate and they highlight the influence of the stiffener dimensions and the impact zone on the structural behavior of the gate. The results of the numerical analyses underline the importance of the development of a global plastic mechanism with the purpose of dissipating a large amount of energy

    Effect of Transient Creep Strain Model on the Behavior of Concrete Columns Subjected to Heating and Cooling

    Full text link
    peer reviewedIn the numerical analysis of structures in fire, the material models that are used have important implications on the global behavior of the structure. In concrete, a particular phenomenon appears when subjected to high temperatures: the transient creep strain. Models integrating explicitly a term for transient creep strain have been proposed in the literature but, in the current Eurocode 2 model, there is no explicit term for transient creep strain. This phenomenon is included in the Eurocode 2 model, but it is implicitly considered in the mechanical strain term. A series of experimental fire tests on axially restrained concrete columns subjected to heating and cooling has been recently performed at South China University of Technology and described by Wu et al. (Fire Technol 46:231–249). In the original paper, it was shown that using the implicit model of Eurocode 2, the behavior of the columns cannot be simulated properly, especially during the cooling phase. The objective of the present paper is to perform again the fire tests simulations using a new formulation of the Eurocode 2 model that contains an explicit term for transient creep. In the first part of the paper, the explicit formulation of the Eurocode 2 model is presented. In the second part, the fire tests are modeled with the software SAFIR using, on the one hand, the implicit Eurocode model and, on the other hand, the new explicit model. It is shown that the transient creep model has significant implications on the global behavior of structural concrete members, as the residual axial load sustained by the columns at the end of the fire can differ by up to 25% of the initial applied load depending on the transient creep strain model that is used for the calculation. The experimental behavior is better matched with the new explicit model than with the current Eurocode model. Particularly, the results given by the Eurocode model during the cooling phase are unconservative as the residual axial load is overestimated. Finally, it is explained why, on the basis of an example, in a performance-based approach, these results can have important implications on the global fire resistance of a structure

    A METHOD FOR MEASURING THE SENSITIVITY OF BUILDING STRUCTURAL MEMBERS TO FIRE DECAY PHASES

    Get PDF
    Firefighters face a major threat when intervening in a building during a fire: the possibility of structural collapse during the cooling phase of the fire, or soon thereafter. At present, this threat is amplified by the fact that the behaviour of structures after the time of peak gas temperature is not well understood, and is not taken into account in the design. This work presents an analysis of the behaviour of different structural members under natural fires, and develops a method for characterizing their sensitivity to fire decay phases. Thermo-mechanical numerical simulations based on the non-linear finite element method are conducted using the parametric fire model of the Eurocode to represent natural fires. The results show that, for all the members (a column, a beam) and materials (reinforced concrete, steel and timber) that are studied here, structural failure during or after the cooling phase of a fire is a possible event. The major factors that promote delayed structural failure are thermal inertia and the constituting material of the member. A method, based on a new indicator, is proposed for quantifying the propensity to delayed failure for structural members under natural fire. This work enhances the understanding of the behaviour of structures under natural fires, and has important implications for the safety of fire brigades and of people responsible for making a building inspection after a fire

    Validation of the Advanced Calculation Model SAFIR Through DIN EN 1991-1-2 Procedure

    Full text link
    peer reviewedThe validation of advanced calculation models for the fire design is an important issue for computer code developers, designers and authorities. One approach consists in the comparison with experimental results, which are not always available or are not always useful, due to the lack of details about the input data or the results, or uncertainties about the boundary conditions. This paper presents the validation of the special purpose computer program SAFIR (2005) for structural fire analysis, through DIN EN1991-1-2 procedure (2010), which represents an alternative to the validation through fire tests

    Exploratory study into a safety format for composite columns exposed to fire

    Get PDF
    Current performance based structural fire engineering approaches evaluate structural behaviour under prescribed fire scenarios. The mechanical properties of the materials, the load conditions and geometric parameters are all however fraught with uncertainty, and there is currently no clear safety format ensuring the reliability of the design solution. In this contribution, a safety format is explored for evaluating the fire resistance of composite columns, following results obtained in earlier studies on uncertainty quantification. Using the safety format, a single nonlinear finite element evaluation of the fire resistance time is combined with a global safety factor, defining its design value. Under the assumptions derived from earlier work, the safety format works well, but additional parameter studies indicate that good performance is limited to relatively low ambient design utilization ratios. The results thus highlight the importance of uncertainty quantification and the limitations of basing a safety format for structural fire design on limited studies. It is concluded that detailed studies into the probabilistic description of the response of composite columns exposed to fire are required to generalize the results to a broadly applicable design rule

    Demonstrating adequate safety for a concrete column exposed to fire, using probabilistic methods

    Get PDF
    Demonstrating adequate safety for exceptional designs and new design applications requires an explicit evaluation of the safety level, considering the uncertainties associated with the design. The recently published PD 7974-7:2019 provides five routes to demonstrating adequate safety through probabilistic methods but does not include worked examples. The case study in this paper presents three state-of-the-art approaches for demonstrating achievement of an absolute safety target (acceptance concept ‘AC3’ in PD 7974-7:2019) for a concrete column in an office building with stringent reliability requirements. The case study shows how fragility curves listed by, for example, industry organizations can support probabilistic approaches and a more comprehensive understanding of design performance

    The MaxEnt method for probabilistic structural fire engineering : performance for multi-modal outputs

    Get PDF
    Probabilistic Risk Assessment (PRA) methodologies are gaining traction in fire engineering practice as a (necessary) means to demonstrate adequate safety for uncommon buildings. Further, an increasing number of applications of PRA based methodologies in structural fire engineering can be found in the contemporary literature. However, to date, the combination of probabilistic methods and advanced numerical fire engineering tools has been limited due to the absence of a methodology which is both efficient (i.e. requires a limited number of model evaluations) and unbiased (i.e. without prior assumptions regarding the output distribution type). An uncertainty quantification methodology (termed herein as MaxEnt) has recently been presented targeted at an unbiased assessment of the model output probability density function (PDF), using only a limited number of model evaluations. The MaxEnt method has been applied to structural fire engineering problems, with some applications benchmarked against Monte Carlo Simulations (MCS) which showed excellent agreement for single-modal distributions. However, the power of the method is in application for those cases where ‘validation’ is not computationally practical, e.g. uncertainty quantification for problems reliant upon complex modes (such as FEA or CFD). A recent study by Gernay, et al., applied the MaxEnt method to determine the PDF of maximum permissible applied load supportable by a steel-composite slab panel undergoing tensile membrane action (TMA) when subject to realistic (parametric) fire exposures. The study incorporated uncertainties in both the manifestation of the fire and the mechanical material parameters. The output PDF of maximum permissible load was found to be bi-modal, highlighting different failure modes depending upon the combinations of stochastic parameters. Whilst this outcome highlighted the importance of an un-biased approximation of the output PDF, in the absence of a MCS benchmark the study concluded that some additional studies are warranted to give users confidence and guidelines in such situations when applying the MaxEnt method. This paper summarises one further study, building upon Case C as presented in Gernay, et al

    Effects of various design parameters on system-level fire fragility functions for steel buildings

    Full text link
    The existing literature in fire engineering is mostly based on single component study of structures, as opposed to system level building performance. In current practice, fire does not need to be considered as part of the structural design of the building. The required fire protection for steel components in a building is based on prescriptive design guidelines, which are based on standard fire tests on individual structural members. In addition, the fire-structure engineering has primary focused on deterministic analysis, while the field is moving towards performance-based design in recent years. Meanwhile, the scenarios leading to a fire event and the performance of the structure at elevated temperatures involve a great level of uncertainty. This work focuses on fire-structure interaction with the objective of developing fire fragility functions that capture fire damage uncertainty for the entire building (i.e., at the system-level). A fragility function provides the probability of exceeding a damage state for a given intensity measure of a given hazard. Fire fragility functions can be developed to measure the expected losses based on performance of a building structural system, rather than a single component. Different functions can be developed for buildings with different typologies (e.g. high-rise steel building with moment resisting frame, low rise steel building with bracing). This presentation derives fragility functions based on stochastic analyses of prototype buildings. In developing the fragility functions, uncertainties in the fire model, the heat transfer model and the thermo-mechanical response should be considered; but such a large number of random variables adds to the complexity of analysis and the computational time. Based on a sensitivity analysis for steel gravity frames, this work identifies the most important input parameters to be considered as random variables when developing fire fragility functions for an entire building. The sensitivity analysis for a multi-story steel building prototype is completed considering uncertainties at the compartment and building levels. At the compartment level, uncertainty in the fire scenario, compartment geometry, applied load, thermal and mechanical properties of steel and insulating materials are considered. At the building level, the influence of fire-resistance rating, building height, and occupancy type are studied. The results of this study identify the local and global parameters needed as part of deriving system-level fire fragility functions for a steel building.Peer reviewe

    Fire risk assessment of multi-story buildings based on fragility analysis

    Full text link
    peer reviewedRecent efforts aim at assessing the fire performance of structures in a probabilistic framework. But there is still no well-established method to quantify the reliability of entire buildings. Previous works focused on isolated structural members, therefore not allowing for a determination of the global safety level of buildings. Here, a new methodology is developed to quantify the reliability of buildings in fire. The methodology uses Monte Carlo simulations for constructing fragility functions associated with different fire breakout locations in a building, then combines the functions to characterize the overall building conditional probability of failure, and finally incorporates the probabilistic models for intensity measure and fire occurrence likelihood. The methodology is applied to multi-story steel buildings. This work addresses fire reliability at the building scale, and therefore is useful for standardizing safety level as well as for evaluating community resilience

    Experimental Tests and Numerical Modelling on Slender Steel Columns at High Temperatures

    Full text link
    Purpose The purpose of this paper is to gain from experimental tests an insight into the failure mode of slender steel columns subjected to fire. The tests will also be used to validate a numerical model. Design/methodology/approach A series of experimental fire tests were conducted on eight full-scale steel columns made of slender I-shaped Class 4 sections. Six columns were made of welded sections (some prismatic and some tapered members), and two columns were made of hot rolled sections. The nominal length of the columns was 2.7 meters with the whole length being heated. The load was applied at ambient temperature after which the temperature was increased under constant load. The load was applied concentrically on some tests and with an eccentricity in other tests. Heating was applied by electrical resistances enclosed in ceramic pads. Numerical simulations were performed with the software SAFIR® using shell elements. Findings The tests have allowed determining the appropriate method of application of the electrical heating system for obtaining a uniform temperature distribution in the members. Failure of the columns during the tests occurred by combination of local and global buckling. The numerical model reproduced correctly the failure modes as well as the critical temperatures. Originality/value The numerical model that has been validated has been used in subsequent parametric analyses performed to derive design equations to be used in practice. This series of test results can be used by the scientific community to validate their own numerical or analytical models for the fire resistance of slender steel columns.FIDESC
    corecore