1,219 research outputs found

    A phase 1, first-in-child, multicenter study to evaluate the safety and efficacy of the oncolytic herpes virus talimogene laherparepvec in pediatric patients with advanced solid tumors

    Get PDF
    Immunotherapy; Oncolytic herpes virus; Pediatric solid tumorInmunoterapia; Virus del herpes oncolítico; Tumor sólido pediátricoImmunoteràpia; Virus de l'herpes oncolític; Tumor sòlid pediàtricBackground: The survival rates for pediatric patients with relapsed and refractory tumors are poor. Successful treatment strategies are currently lacking and there remains an unmet need for novel therapies for these patients. We report here the results of a phase 1 study of talimogene laherparepvec (T-VEC) and explore the safety of this oncolytic immunotherapy for the treatment of pediatric patients with advanced non–central nervous system tumors. Methods: T-VEC was delivered by intralesional injection at 106 plaque-forming units (PFU)/ml on the first day, followed by 108 PFU/ml on the first day of week 4 and every 2 weeks thereafter. The primary objective was to evaluate the safety and tolerability as assessed by the incidence of dose-limiting toxicities (DLTs). Secondary objectives included efficacy indicated by response and survival per modified immune-related response criteria simulating the Response Evaluation Criteria in Solid Tumors (irRC-RECIST). Results: Fifteen patients were enrolled into two cohorts based on age: cohort A1 (n = 13) 12 to ≤21 years old (soft-tissue sarcoma, n = 7; bone sarcoma, n = 3; neuroblastoma, n = 1; nasopharyngeal carcinoma, n = 1; and melanoma, n = 1) and cohort B1 (n = 2) 2 to <12 years old (melanoma, n = 2). Overall, patients received treatment for a median (range) of 5.1 (0.1, 39.4) weeks. No DLTs were observed during the evaluation period. All patients experienced at least one treatment-emergent adverse event (TEAE), and 53.3% of patients reported grade ≥3 TEAEs. Overall, 86.7% of patients reported treatment-related TEAEs. No complete or partial responses were observed, and three patients (20%) overall exhibited stable disease as the best response. Conclusions: T-VEC was tolerable as assessed by the observation of no DLTs. The safety data were consistent with the patients' underlying cancer and the known safety profile of T-VEC from studies in the adult population. No objective responses were observed.This study received funding from Amgen Inc. The funder was involved in the study design; collection, analysis, and interpretation of data; the writing of this article; and the decision to submit it for publication

    Envelope Exchange for the Generation of Live-Attenuated Arenavirus Vaccines

    Get PDF
    Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell–mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates

    The children's brain tumor network (CBTN) - Accelerating research in pediatric central nervous system tumors through collaboration and open science

    Full text link
    Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adult cancers. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children's Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community. The CBTN's 32 member institutions utilize a shared regulatory governance architecture at the Children's Hospital of Philadelphia to accelerate and maximize the use of biospecimens and data. As of August 2022, CBTN has enrolled over 4700 subjects, over 1500 parents, and collected over 65,000 biospecimen aliquots for research. Additionally, over 80 preclinical models have been developed from collected tumors. Multi-omic data for over 1000 tumors and germline material are currently available with data generation for > 5000 samples underway. To our knowledge, CBTN provides the largest open-access pediatric brain tumor multi-omic dataset annotated with longitudinal clinical and outcome data, imaging, associated biospecimens, child-parent genomic pedigrees, and in vivo and in vitro preclinical models. Empowered by NIH-supported platforms such as the Kids First Data Resource and the Childhood Cancer Data Initiative, the CBTN continues to expand the resources needed for scientists to accelerate translational impact for improved outcomes and quality of life for children with brain and spinal cord tumors

    Correction to: Central nervous system tumors in children under 5 years of age: a report on treatment burden, survival and long-term outcomes

    Full text link
    PURPOSE: The challenges of treating central nervous system (CNS) tumors in young children are many. These include age-specific tumor characteristics, limited treatment options, and susceptibility of the developing CNS to cytotoxic therapy. The aim of this study was to analyze the long-term survival, health-related, and educational/occupational outcomes of this vulnerable patient population. METHODS: Retrospective study of 128 children diagnosed with a CNS tumor under 5 years of age at a single center in Switzerland between 1990 and 2019. RESULTS: Median age at diagnosis was 1.81 years [IQR, 0.98–3.17]. Median follow-up time of surviving patients was 8.39 years [range, 0.74–23.65]. The main tumor subtypes were pediatric low-grade glioma (36%), pediatric high-grade glioma (11%), ependymoma (16%), medulloblastoma (11%), other embryonal tumors (7%), germ cell tumors (3%), choroid plexus tumors (6%), and others (9%). The 5-year overall survival (OS) was 78.8% (95% CI, 71.8–86.4%) for the whole cohort. Eighty-seven percent of survivors > 5 years had any tumor- or treatment-related sequelae with 61% neurological complications, 30% endocrine sequelae, 17% hearing impairment, and 56% visual impairment at last follow-up. Most patients (72%) attended regular school or worked in a skilled job at last follow-up. CONCLUSION: Young children diagnosed with a CNS tumor experience a range of complications after treatment, many of which are long-lasting and potentially debilitating. Our findings highlight the vulnerabilities of this population, the need for long-term support and strategies for rehabilitation, specifically tailored for young children. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-022-03963-3

    Central nervous system tumors in children under 5 years of age: a report on treatment burden, survival and long-term outcomes

    Full text link
    PURPOSE The challenges of treating central nervous system (CNS) tumors in young children are many. These include age-specific tumor characteristics, limited treatment options, and susceptibility of the developing CNS to cytotoxic therapy. The aim of this study was to analyze the long-term survival, health-related, and educational/occupational outcomes of this vulnerable patient population. METHODS Retrospective study of 128 children diagnosed with a CNS tumor under 5 years of age at a single center in Switzerland between 1990 and 2019. RESULTS Median age at diagnosis was 1.81 years [IQR, 0.98-3.17]. Median follow-up time of surviving patients was 8.39 years [range, 0.74-23.65]. The main tumor subtypes were pediatric low-grade glioma (36%), pediatric high-grade glioma (11%), ependymoma (16%), medulloblastoma (11%), other embryonal tumors (7%), germ cell tumors (3%), choroid plexus tumors (6%), and others (9%). The 5-year overall survival (OS) was 78.8% (95% CI, 71.8-86.4%) for the whole cohort. Eighty-seven percent of survivors > 5 years had any tumor- or treatment-related sequelae with 61% neurological complications, 30% endocrine sequelae, 17% hearing impairment, and 56% visual impairment at last follow-up. Most patients (72%) attended regular school or worked in a skilled job at last follow-up. CONCLUSION Young children diagnosed with a CNS tumor experience a range of complications after treatment, many of which are long-lasting and potentially debilitating. Our findings highlight the vulnerabilities of this population, the need for long-term support and strategies for rehabilitation, specifically tailored for young children

    Educational Attainment and Employment Outcome of Survivors of Pediatric CNS Tumors in Switzerland-A Report from the Swiss Childhood Cancer Survivor Study

    Full text link
    BACKGROUND: Childhood cancer survivors diagnosed with a central nervous system (CNS) tumor are at risk for educational and vocational challenges. This study compared educational attainment and employment outcome in survivors of CNS tumors to survivors of other malignancies. METHODS: The questionnaire-based Swiss Childhood Cancer Survivor Study (SCCSS) included cancer patients diagnosed between 1976 and 2010, aged ≤20 years, who survived ≥5 years after diagnosis. We classified participants aged ≥16 years into three groups: CNS tumor and non-CNS malignancy with and without CNS-directed treatment. We analyzed educational attainment, employment outcome and special schooling. Subgroup analyses included survivors aged ≥25 years. RESULTS: We analyzed 2154 survivors, including 329 (15%) CNS tumor survivors, 850 (40%) non-CNS tumor survivors with and 975 (45%) without CNS-directed treatment. Fewer CNS tumor survivors aged ≥25 years reached tertiary education (44%) compared to those without CNS-directed treatment (51%) but performed similar to survivors with CNS-directed treatment (42%). Among CNS tumor survivors, 36 (14%) received special schooling. Higher parental education was associated with higher levels in survivors. Employment outcome did not significantly differ between the three diagnostic groups. A higher proportion of CNS tumor survivors received disability pension or were unemployed. CONCLUSIONS: Our findings suggest that CNS tumor survivors need more time to achieve their highest educational level. This should influence clinical care of these survivors by offering vocational counseling

    MEDB-41. Identifying a subgroup of patients with early childhood sonic hedgehog-activated medulloblastoma with unfavorable prognosis after treatment with radiation-sparing regimens including intraventricular methotrexate [Abstract]

    Get PDF
    PURPOSE/METHODS: Clinical and molecular risk factors in 142 patients 3 years] 47% vs 85% [<1 year] vs 84% [1-3 years], p<0.001). No TP53 mutations were detected (n=47). DNA methylation classification identified three subgroups: SHH-1(v12.3) (n=39), SHH-2(v12.3) (n=19), and SHH-3(v12.3) (n=19), with distinct cytogenetic profiles (chromosome 2 gains in SHH-1(v12.3), very few alterations in SHH-2(v12.3), and chromosome 9q losses in SHH-3(v12.3)), age profiles (median age [years] SHH-1(v12.3): 1.7, SHH-2(v12.3): 0.9, SHH-3(v12.3): 3.0, p<0.001), and histological distribution (SHH-2(v12.3): 74% MBEN, SHH-1(v12.3)/SHH-3(v12.3): 77%/79% DMB, p<0.001). PFS was more unfavorable in patients with SHH-3(v12.3)-medulloblastoma (5-year PFS 53% vs 86% [SHH-1(v12.3)] vs 95% [SHH-2(v12.3)], p=0.002), which remained the only risk factor on multivariable Cox regression for PFS. OS was comparable (5-year OS 94% [SHH-3(v12.3)] vs 97% [SHH-1(v12.3)] vs 100% [SHH-2(v12.3)], p=0.6). 8/9 patients with SHH-3(v12.3)-medulloblastoma received radiotherapy at relapse (6 craniospinal, 2 local [1 Gorlin syndrome, 1 BRCA2 germline mutation], 1 no radiotherapy [Gorlin syndrome]). CONCLUSION: We identify patients with an increased risk of relapse when treated with radiation-sparing approaches among children with early childhood SHH-medulloblastoma. If these tumors differ from SHH-3-medulloblastoma typically described in older children remains to be verified. Treatment recommendations need to consider cancer predisposition syndromes

    Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts

    Full text link
    Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification

    Clinical and molecular characterization of isolated M1 disease in pediatric medulloblastoma: experience from the German HIT-MED studies

    Get PDF
    PURPOSE: To evaluate the clinical impact of isolated spread of medulloblastoma cells into cerebrospinal fluid without additional macroscopic metastases (M1-only). METHODS: The HIT-MED database was searched for pediatric patients with M1-only medulloblastoma diagnosed from 2000 to 2019. Corresponding clinical and molecular data was evaluated. Treatment was stratified by age and changed over time for older patients. RESULTS: 70 patients with centrally reviewed M1-only disease were identified. Clinical data was available for all and molecular data for 45/70 cases. 91% were non-WNT/non-SHH medulloblastoma (Grp3/4). 5-year PFS for 52 patients ≥ 4 years was 59.4 (± 7.1) %, receiving either upfront craniospinal irradiation (CSI) or SKK-sandwich chemotherapy (CT). Outcomes did not differ between these strategies (5-year PFS: CSI 61.7 ± 9.9%, SKK-CT 56.7 ± 6.1%). For patients < 4 years (n = 18), 5-year PFS was 50.0 (± 13.2) %. M1-persistence occurred exclusively using postoperative CT and was a strong negative predictive factor (p(PFS/OS) < 0.01). Patients with additional clinical or molecular high-risk (HR) characteristics had worse outcomes (5-year PFS 42.7 ± 10.6% vs. 64.0 ± 7.0%, p = 0.03). In n = 22 patients ≥ 4 years with full molecular information and without additional HR characteristics, risk classification by molecular subtyping had an effect on 5-year PFS (HR 16.7 ± 15.2%, SR 77.8 ± 13.9%; p = 0.01). CONCLUSIONS: Our results confirm that M1-only is a high-risk condition, and further underline the importance of CSF staging. Specific risk stratification of affected patients needs attention in future discussions for trials and treatment recommendations. Future patients without contraindications may benefit from upfront CSI by sparing risks related to higher cumulative CT applied in sandwich regimen. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-021-03913-5

    Clinical and molecular characterization of isolated M1 disease in pediatric medulloblastoma: experience from the German HIT-MED studies

    Full text link
    PURPOSE: To evaluate the clinical impact of isolated spread of medulloblastoma cells into cerebrospinal fluid without additional macroscopic metastases (M1-only). METHODS: The HIT-MED database was searched for pediatric patients with M1-only medulloblastoma diagnosed from 2000 to 2019. Corresponding clinical and molecular data was evaluated. Treatment was stratified by age and changed over time for older patients. RESULTS: 70 patients with centrally reviewed M1-only disease were identified. Clinical data was available for all and molecular data for 45/70 cases. 91% were non-WNT/non-SHH medulloblastoma (Grp3/4). 5-year PFS for 52 patients ≥ 4 years was 59.4 (± 7.1) %, receiving either upfront craniospinal irradiation (CSI) or SKK-sandwich chemotherapy (CT). Outcomes did not differ between these strategies (5-year PFS: CSI 61.7 ± 9.9%, SKK-CT 56.7 ± 6.1%). For patients < 4 years (n = 18), 5-year PFS was 50.0 (± 13.2) %. M1-persistence occurred exclusively using postoperative CT and was a strong negative predictive factor (pPFS/OS_{PFS/OS} < 0.01). Patients with additional clinical or molecular high-risk (HR) characteristics had worse outcomes (5-year PFS 42.7 ± 10.6% vs. 64.0 ± 7.0%, p = 0.03). In n = 22 patients ≥ 4 years with full molecular information and without additional HR characteristics, risk classification by molecular subtyping had an effect on 5-year PFS (HR 16.7 ± 15.2%, SR 77.8 ± 13.9%; p = 0.01). CONCLUSIONS: Our results confirm that M1-only is a high-risk condition, and further underline the importance of CSF staging. Specific risk stratification of affected patients needs attention in future discussions for trials and treatment recommendations. Future patients without contraindications may benefit from upfront CSI by sparing risks related to higher cumulative CT applied in sandwich regimen
    corecore