9,003 research outputs found

    Crystallographic Analyses of Ion Channels: Lessons and Challenges

    Get PDF
    Membrane proteins fascinate at many levels, from their central functional roles in transport, energy transduction, and signal transduction processes to structural questions concerning how they fold and operate in the exotic environments of the membrane bilayer and the water-bilayer interface and to methodological issues associated with studying membrane proteins either in situ or extracted from the membrane. This interplay is beautifully exemplified by ion channels, a collection of integral membrane proteins that mediate the transmembrane passage of ions down their electrochemical potential gradient (for general reviews, see Refs. 1 and 2). Ion channels are key elements of signaling and sensing pathways, including nerve cell conduction, hormone response, and mechanosensation. The characteristic properties of ion channels reflect their conductance, ion selectivity, and gating. Ion channels are often specific for a particular type of ion (such as potassium or chloride) or a class of ions (such as anions) and are typically regulated by conformational switching of the protein structure between "open" and "closed" states. This conformational switching may be gated in response to changes in membrane potential, ligand binding, or application of mechanical forces. Detailed functional characterizations of channels and their gating mechanisms have been achieved, reflecting exquisite methodological advances such as patch clamp methods that can monitor the activities of individual channels (3). Until recently, corresponding information about the three-dimensional structures of channels was not available, reflecting difficulties in obtaining sufficient quantities of membrane proteins for crystallization trials. Happily, this situation has started to change with the structure determinations of the Streptomyces lividans K+ channel (KcsA (4)) and the Mycobacterium tuberculosis mechanosensitive channel (MscL (5)). A variety of reviews (6-12) have appeared recently that discuss functional implications of these channel structures. This review discusses these developments from a complementary perspective, by considering the implications of these structures from within the larger framework of membrane protein structure and function. Because of space restrictions, this review necessarily emphasizes membrane proteins that are composed primarily of alpha-helical bundles, such as KcsA and MscL, rather than beta-barrel proteins, such as porins, typically found in bacterial outer membranes

    A Simple BATSE Measure of GRB Duty Cycle

    Get PDF
    We introduce a definition of gamma-ray burst (GRB) duty cycle that describes the GRB's efficiency as an emitter; it is the GRB's average flux relative to the peak flux. This GRB duty cycle is easily described in terms of measured BATSE parameters; it is essentially fluence divided by the quantity peak flux times duration. Since fluence and duration are two of the three defining characteristics of the GRB classes identified by statistical clustering techniques (the other is spectral hardness), duty cycle is a potentially valuable probe for studying properties of these classes.Comment: 4 pages, 1 figure, presented at the 5th Huntsville Gamma-Ray Burst Symposiu

    A computer model to simulate scoliosis surgery

    Get PDF
    Use of patient-specific computer models as a pre-operative planning tool permits predictions of the likely deformity correction and allows a more detailed investigation of the biomechanical influence of different surgical procedures on the scoliotic spinal anatomy. In this paper, patient-specific computer models are used of adolescent idiopathic scoliosis patients who underwent a single rod anterior procedure at the Mater Children’s Hospital in Brisbane, to predict deformity correction and to investigate the change in biomechanics of the scoliotic spine due to surgical compressive forces applied during implant placement

    Bias in judgement: Comparing individuals and groups

    Get PDF
    The relative susceptibility of individuals and groups to systematic judgmental biases is considered. An overview of the relevant empirical literature reveals no clear or general pattern. However, a theoretical analysis employing J. H. Davis's (1973) social decision scheme (SDS) model reveals that the relative magnitude of individual and group bias depends upon several factors, including group size, initial individual judgment, the magnitude of bias among individuals, the type of bias, and most of all, the group-judgment process. It is concluded that there can be no simple answer to the question, "Which are more biased, individuals or groups?," but the SDS model offers a framework for specifying some of the conditions under which individuals are both more and less biased than groups

    Binary-black-hole initial data with nearly-extremal spins

    Get PDF
    There is a significant possibility that astrophysical black holes with nearly-extremal spins exist. Numerical simulations of such systems require suitable initial data. In this paper, we examine three methods of constructing binary-black-hole initial data, focusing on their ability to generate black holes with nearly-extremal spins: (i) Bowen-York initial data, including standard puncture data (based on conformal flatness and Bowen-York extrinsic curvature), (ii) standard quasi-equilibrium initial data (based on the extended-conformal-thin-sandwich equations, conformal flatness, and maximal slicing), and (iii) quasi-equilibrium data based on the superposition of Kerr-Schild metrics. We find that the two conformally-flat methods (i) and (ii) perform similarly, with spins up to about 0.99 obtainable at the initial time. However, in an evolution, we expect the spin to quickly relax to a significantly smaller value around 0.93 as the initial geometry relaxes. For quasi-equilibrium superposed Kerr-Schild (SKS) data [method (iii)], we construct initial data with \emph{initial} spins as large as 0.9997. We evolve SKS data sets with spins of 0.93 and 0.97 and find that the spin drops by only a few parts in 10^4 during the initial relaxation; therefore, we expect that SKS initial data will allow evolutions of binary black holes with relaxed spins above 0.99. [Abstract abbreviated; full abstract also mentions several secondary results.

    Postoperative low dose CT assessment of interbody fusion two years after thoracoscopic scoliosis surgery

    Get PDF
    The relationship between radiologic union and clinical outcomes in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate for the first time the interbody fusion rates using low dose CT scans at minimum 24 months after thoracoscopic scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in the disc space. The study found that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery

    PARTICIPATION IN MULTIPLE-PERIL CROP INSURANCE: RISK ASSESSMENTS AND RISK PREFERENCES OF CRANBERRY GROWERS

    Get PDF
    To investigate the poor participation rate of cranberry growers in the multiple-peril crop insurance program, a sample of 15 Massachusetts growers was interviewed. According to their risk preferences, a much greater proportion of growers should have insured, than actually did. A possible solution is to match the distribution used by the insurer closer to that believed by the grower. Adjusting each grower's historical yield series for trend brought the historical and subjective mean yields much closer. However, an aggregate test found the effect of adjustment to be insignificant, implying that the avenue for increased participation lies elsewhere.Risk and Uncertainty,
    corecore