6 research outputs found

    Primary tumor–derived systemic nANGPTL4 inhibits metastasis

    Get PDF
    Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent

    Preclinical validation of a novel metastasis‐inhibiting Tie1 function‐blocking antibody

    No full text
    Abstract The angiopoietin (Ang)–Tie pathway has been intensely pursued as candidate second‐generation anti‐angiogenic target. While much of the translational work has focused on the ligand Ang2, the clinical efficacy of Ang2‐targeting drugs is limited and failed to improve patient survival. In turn, the orphan receptor Tie1 remains therapeutically unexplored, although its endothelial‐specific genetic deletion has previously been shown to result in a strong reduction in metastatic growth. Here, we report a novel Tie1 function‐blocking antibody (AB‐Tie1‐39), which suppressed postnatal retinal angiogenesis. During primary tumor growth, neoadjuvant administration of AB‐Tie1‐39 strongly impeded systemic metastasis. Furthermore, the administration of AB‐Tie1‐39 in a perioperative therapeutic window led to a significant survival advantage as compared to control‐IgG‐treated mice. Additional in vivo experimental metastasis and in vitro transmigration assays concurrently revealed that AB‐Tie1‐39 treatment suppressed tumor cell extravasation at secondary sites. Taken together, the data phenocopy previous genetic work in endothelial Tie1 KO mice and thereby validate AB‐Tie1‐39 as a Tie1 function‐blocking antibody. The study establishes Tie1 as a therapeutic target for metastasis in a perioperative or neoadjuvant setting

    Pericyte-expressed Tie2 controls angiogenesis and vessel maturation

    No full text
    The Tie receptors with their Angiopoietin ligands act as regulators of angiogenesis and vessel maturation. Tie2 exerts its functions through its supposed endothelial-specific expression. Yet, Tie2 is also expressed at lower levels by pericytes and it has not been unravelled through which mechanisms pericyte Angiopoietin/Tie signalling affects angiogenesis. Here we show that human and murine pericytes express functional Tie2 receptor. Silencing of Tie2 in pericytes results in a pro-migratory phenotype. Pericyte Tie2 controls sprouting angiogenesis in in vitro sprouting and in vivo spheroid assays. Tie2 downstream signalling in pericytes involves Calpain, Akt and FOXO3A. Ng2-Cre-driven deletion of pericyte-expressed Tie2 in mice transiently delays postnatal retinal angiogenesis. Yet, Tie2 deletion in pericytes results in a pronounced pro-angiogenic effect leading to enhanced tumour growth. Together, the data expand and revise the current concepts on vascular Angiopoietin/Tie signalling and propose a bidirectional, reciprocal EC-pericyte model of Tie2 signalling

    Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression

    No full text
    Background: Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression. Methods: Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas. Results: Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumor−promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice
    corecore