10 research outputs found

    How to recognize a 4-ball when you see one

    Full text link
    We apply the method of filling with holomorphic discs to a 4-dimensional symplectic cobordism with the standard contact 3-sphere as one convex boundary component. We establish the following dichotomy: either the cobordism is diffeomorphic to a ball, or there is a periodic Reeb orbit of quantifiably short period in the concave boundary of the cobordism. This allows us to give a unified treatment of various results concerning Reeb dynamics on contact 3-manifolds, symplectic fillability, the topology of symplectic cobordisms, symplectic nonsqueezing, and the nonexistence of exact Lagrangian surfaces in standard symplectic 4-space

    Contact spheres and hyperk\"ahler geometry

    Full text link
    A taut contact sphere on a 3-manifold is a linear 2-sphere of contact forms, all defining the same volume form. In the present paper we completely determine the moduli of taut contact spheres on compact left-quotients of SU(2) (the only closed manifolds admitting such structures). We also show that the moduli space of taut contact spheres embeds into the moduli space of taut contact circles. This moduli problem leads to a new viewpoint on the Gibbons-Hawking ansatz in hyperkahler geometry. The classification of taut contact spheres on closed 3-manifolds includes the known classification of 3-Sasakian 3-manifolds, but the local Riemannian geometry of contact spheres is much richer. We construct two examples of taut contact spheres on open subsets of 3-space with nontrivial local geometry; one from the Helmholtz equation on the 2-sphere, and one from the Gibbons-Hawking ansatz. We address the Bernstein problem whether such examples can give rise to complete metrics.Comment: 29 pages, v2: Large parts have been rewritten; previous Section 6 has been removed; new Section 5.2 on the Gibbons-Hawking ansatz; new Sections 6 and

    Eliashberg's proof of Cerf's theorem

    Full text link
    Following a line of reasoning suggested by Eliashberg, we prove Cerf's theorem that any diffeomorphism of the 3-sphere extends over the 4-ball. To this end we develop a moduli-theoretic version of Eliashberg's filling-with-holomorphic-discs method.Comment: 32 page

    Trapped Reeb orbits do not imply periodic ones

    No full text

    Seifert fibrations of lens spaces

    No full text
    corecore