1,504 research outputs found
Charge Transport Properties of a Metal-free Phthalocyanine Discotic Liquid Crystal
Discotic liquid crystals can self-align to form one-dimensional
semiconducting wires, many tens of microns long. In this letter, we describe
the preparation of semiconducting films where the stacking direction of the
disc-like molecules is perpendicular to the substrate surface. We present
measurements of the charge carrier mobility, applying temperature-dependent
time-of-flight transient photoconductivity, space-charge limited current
measurements, and field-effect mobility measurements. We provide experimental
verification of the highly anisotropic nature of semiconducting films of
discotic liquid crystals, with charge carrier mobilities of up to
2.8x10cm/Vs. These properties make discotics an interesting choice
for applications such as organic photovoltaics.Comment: 5 pages, 5 figure
Provenance for SPARQL queries
Determining trust of data available in the Semantic Web is fundamental for
applications and users, in particular for linked open data obtained from SPARQL
endpoints. There exist several proposals in the literature to annotate SPARQL
query results with values from abstract models, adapting the seminal works on
provenance for annotated relational databases. We provide an approach capable
of providing provenance information for a large and significant fragment of
SPARQL 1.1, including for the first time the major non-monotonic constructs
under multiset semantics. The approach is based on the translation of SPARQL
into relational queries over annotated relations with values of the most
general m-semiring, and in this way also refuting a claim in the literature
that the OPTIONAL construct of SPARQL cannot be captured appropriately with the
known abstract models.Comment: 22 pages, extended version of the ISWC 2012 paper including proof
Molecular semiconductors and the Ioffe–Regel criterion: A terahertz study on band transport in DBTTT
Terahertz electromodulation spectroscopy provides insight into the physics of charge carrier transport in molecular semiconductors. The work focuses on thin-film devices of dibenzothiopheno[6,5-b:6′,5′-f]thieno[3,2-b]thiophene. Frequency-resolved data show a Drude-like response of the hole gas in the accumulation region. The temperature dependence of the mobilities follows a T1/2 power law. This indicates that the thermal mean free path of the charge carriers is restricted by disorder. Only a fraction of approximately 5% of the injected carriers fulfills the Ioffe–Regel criterion and participates in band transport.info:eu-repo/semantics/publishe
First-Order Provenance Games
We propose a new model of provenance, based on a game-theoretic approach to
query evaluation. First, we study games G in their own right, and ask how to
explain that a position x in G is won, lost, or drawn. The resulting notion of
game provenance is closely related to winning strategies, and excludes from
provenance all "bad moves", i.e., those which unnecessarily allow the opponent
to improve the outcome of a play. In this way, the value of a position is
determined by its game provenance. We then define provenance games by viewing
the evaluation of a first-order query as a game between two players who argue
whether a tuple is in the query answer. For RA+ queries, we show that game
provenance is equivalent to the most general semiring of provenance polynomials
N[X]. Variants of our game yield other known semirings. However, unlike
semiring provenance, game provenance also provides a "built-in" way to handle
negation and thus to answer why-not questions: In (provenance) games, the
reason why x is not won, is the same as why x is lost or drawn (the latter is
possible for games with draws). Since first-order provenance games are
draw-free, they yield a new provenance model that combines how- and why-not
provenance
Discovering Crystal Forms of the Novel Molecular Semiconductor OEG-BTBT
This work is focused on a polymorphic and crystallographic study of a novel p-type organic semiconductor 2,7-bis(2-(2-methoxyethoxy)ethoxy)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (OEG-BTBT). The well-known BTBT core is functionalized by eight-atom-long oligoethylene glycol side chains. Our results demonstrate the discovery of three crystal forms of the OEG-BTBT molecule, namely, Form I, Form II, and Form III, in different experimental conditions. Crystal structures of Form I and Form III are reported, while only unit cell indexing of Form II could be determined. Form I and Form II are enantiotropically related, and Form II is stable at temperatures higher than 127 °C. The kinetics of transformation to Form II was studied by the Avrami equation. Form III is a solvate crystal form which is rarely observed in the field of organic electronics, and upon release of dichloromethane, it converts to Form I. Furthermore, we studied the mechanical properties of the Form I crystals, which exhibit plastic bending upon applying mechanical stress in the [100] direction. This distinct mechanical behavior is rationalized by the slip layer topology, the intermolecular interactions energies from energy frameworks, and the Hirshfeld surface analysis
Mechanistic View on the Order-Disorder Phase Transition in Amphidynamic Crystals
We combine temperature-dependent low-frequency Raman measurements and first-principles calculations to obtain a mechanistic understanding of the order-disorder phase transition of 2,7-di-tert-butylbenzo[b]benzo[4,5]thieno[2,3-d]thiophene (ditBu-BTBT) and crystals. We identify the lattice normal modes associated with the phase transition by following the position and width of the Raman peaks with temperature and identifying peaks that exhibit nonlinear dependence toward the phase transition temperature. Our findings are interpreted according to the "hardcore mode" model previously used to describe order-disorder phase transitions in inorganic and hybrid crystals with a Brownian sublattice. Within the framework of this model, ditBu-BTBT exhibits an ideal behavior where only one lattice mode is associated with the phase transition. TIPS-pentacene deviates strongly from the model due to strong interactions between lattice modes. We discuss the origin of the different behaviors and suggest side-chain engineering as a tool to control polymorphism in amphidynamic crystals
Memory Effect by Melt Crystallization Observed in Polymorphs of a Benzothieno-Benzothiophene Derivative
This work provides a comprehensive illustration of a crystalline melt memory effect recorded for three solvates of the 2,7-bis(2-(2-methoxyethoxy)ethoxy)benzo[b]benzo[4,5] thieno[2,3-d]thiophene (OEG-BTBT) molecule with dichloromethane (DCM) molecules. Combined optical microscopy and X-ray diffraction measurements at different temperatures are used to get an overview of the structural and morphological properties like melting points, isotropic transition temperatures, induction times, and crystallization kinetics of the three forms. An outstanding observation is made upon annealing the three polymorphs at temperatures well above their respective melting points as well as above the optical clearance temperature. After cooling back to room temperature, recrystallization results in the formation of the initial phase present before the annealing process. This melt memory effect is observed for all three solvates. These observations can be correlated to the strong interaction between the DCM molecules and the oligoethylene glycol side chains, even in the molten state. This conclusion rationalizes the experimental observation made upon solvent vapor annealing of the crystalline sample with DCM, which unambiguously transformed the system into a disordered state
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells
The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector T cells and facilitating the presence of high regulatory T cell (Treg) frequencies. Knock-down of the sialic acid transporter created "sialic acid low" tumors, that grew slower in-vivo than hypersialylated tumors, altered the Treg/Teffector balance, favoring immunological tumor control. The enhanced effector T cell response in developing "sialic acid low" tumors was preceded by and dependent on an increased influx and activity of Natural Killer (NK) cells. Thus, tumor hypersialylation orchestrates immune escape at the level of NK and Teff/Treg balance within the tumor microenvironment, herewith dampening tumorspecific T cell control. Reducing sialylation provides a therapeutic option to render tumors permissive to immune attack
- …