25 research outputs found

    Polycyclic aromatic hydrocarbons in disks around young solar-type stars

    Get PDF
    In this thesis we study the dust around solar-type young stars. In particular, we focus on one specific species of dust, namely the Polycyclic Aromatic Hydrocarbons (PAHs), a family of large molecules, or small grains, that are widely observed in nearby star-forming regions. We address the following questions. What happens to PAHs in the embedded phase of a forming star? Are PAHs present in low-mass young star systems? Does the PAH emission originate from the envelope or from the disk? What do they tell us about disk structure and evolution and grain growth? What can we say about the evolution of PAHs during star formation and their typical size? We present mid-infrared spectroscopy and imaging surveys combined with 3D radiative transfer models to constrain the presence and location of PAH emission toward embedded young stellar objects and circumstellar disks around young solar-type stars. PAHs are detected toward a small fraction (11-14%) of young solar-type stars with disks and toward a minority of embedded objects (LEI Universiteit LeidenSterrewacht Leiden - OU

    Polycyclic aromatic hydrocarbons in disks around young solar-type stars

    No full text
    In this thesis we study the dust around solar-type young stars. In particular, we focus on one specific species of dust, namely the Polycyclic Aromatic Hydrocarbons (PAHs), a family of large molecules, or small grains, that are widely observed in nearby star-forming regions. We address the following questions. What happens to PAHs in the embedded phase of a forming star? Are PAHs present in low-mass young star systems? Does the PAH emission originate from the envelope or from the disk? What do they tell us about disk structure and evolution and grain growth? What can we say about the evolution of PAHs during star formation and their typical size? We present mid-infrared spectroscopy and imaging surveys combined with 3D radiative transfer models to constrain the presence and location of PAH emission toward embedded young stellar objects and circumstellar disks around young solar-type stars. PAHs are detected toward a small fraction (11-14%) of young solar-type stars with disks and toward a minority of embedded objects (<3%), with derived abundances of 10-100 times lower than standard interstellar values. A new class of disks with weak mid-IR continuum emission and very strong PAH features is found.</p

    Magnetic Fields in Early B-type Stars

    No full text

    Substellar objects in nearby young clusters (SONYC). VIII. Substellar population in Lupus 3

    No full text
    SONYC - Substellar Objects in Nearby Young Clusters - is a survey program to investigate the frequency and properties of substellar objects in nearby star-forming regions. We present a new imaging and spectroscopic survey conducted in the young (∼1 Myr), nearby (∼200 pc) star-forming region Lupus 3. Deep optical and near-infrared images were obtained with MOSAIC-II and NEWFIRM at the CTIO 4 m telescope, covering ∼1.4 deg2 on the sky. The i-band completeness limit of 20.3 mag is equivalent to 0.009-0.02 M☉, for AV ≤ 5. Photometry and 11-12 yr baseline proper motions were used to select candidate low-mass members of Lupus 3. We performed a spectroscopic follow-up of 123 candidates, using VIMOS at the Very Large Telescope, and we identify 7 probable members, among which 4 have spectral type later than M6.0 and Teff ≤ 3000 K, i.e., are probably substellar in nature. Two of the new probable members of Lupus 3 appear underluminous for their spectral class and exhibit emission line spectrum with strong Hα or forbidden lines associated with active accretion. We derive a relation between the spectral type and effective temperature: Teff = (4120 ± 175)-(172 ± 26) × SpT, where SpT refers to the M spectral subtype between 1 and 9. Combining our results with the previous works on Lupus 3, we show that the spectral type distribution is consistent with that in other star-forming regions, as well as the derived star-to-brown dwarf ratio of 2.0-3.3. We compile a census of all spectroscopically confirmed low-mass members with spectral type M0 or later.</p
    corecore