6,755 research outputs found
Engineering of Low-Loss Metal for Nanoplasmonic and Metamaterials Applications
We have shown that alloying a noble metal (gold) with another metal
(cadmium), which can contribute two electrons per atom to a free electron gas,
can significantly improve the metals optical properties in certain wavelength
ranges and make them worse in the other parts of the spectrum. In particular,
in the gold-cadmium alloy we have demonstrated a significant expansion of the
spectral range of metallic reflectance to shorter wavelengths. The experimental
results and the predictions of the first principles theory demonstrate an
opportunity for the improvement and optimization of low-loss metals for
nanoplasmonic and metamaterials applications.Comment: 14 Pages, 4 figure
Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells
We investigate experimentally transport in gated microsctructures containing
a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal
resistances using many contacts prove that in the depletion regime the current
is carried by the edge channels, as expected for a two-dimensional topological
insulator. However, high and non-quantized values of channel resistances show
that the topological protection length (i.e. the distance on which the carriers
in helical edge channels propagate without backscattering) is much shorter than
the channel length, which is ~100 micrometers. The weak temperature dependence
of the resistance and the presence of temperature dependent reproducible
quasi-periodic resistance fluctuations can be qualitatively explained by the
presence of charge puddles in the well, to which the electrons from the edge
channels are tunnel-coupled.Comment: 8 pages, 4 figures, published versio
Single Track Performance of the Inner Detector New Track Reconstruction (NEWT)
In a previous series of documents we have presented the new ATLAS track reconstruction chain (NEWT) and several of the involved components. It has become the default reconstruction application for the Inner Detector. However, a large scale validation of the reconstruction performance in both efficiency and track resolutions has not been given yet. This documents presents the results of a systematic single track validation of the new track reconstruction and puts it in comparison with results obtained with different reconstruction applications
Optical Properties of Gallium-Doped Zinc Oxide-A Low-Loss Plasmonic Material: First-Principles Theory and Experiment
Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs) are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO), are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical studies are performed by the total-energy-minimization method for the equilibrium atomic structure of GZO and random phase approximation with the quasiparticle gap correction. Plasma excitation effects are also included for optical functions. This study identifies mechanisms other than doping, such as alloying effects, that significantly influence the optical properties of GZO films. It also indicates that ultraheavy Ga doping of ZnO results in a new alloy material, rather than just degenerately doped ZnO. This work is the first step to achieve a fundamental understanding of the connection between material, structural, and optical properties of highly doped TCOs to tailor those materials for various plasmonic applications
- …