190 research outputs found

    Influence of cysteine to cysteic acid oxidation on the collision-activated decomposition of protonated peptides: evidence for intraionic interactions

    Get PDF
    AbstractOxidation of cysteine residues to cysteic acids in C-terminal arginine-containing peptides (such as those derived by tryptic digestion of proteins) strongly promotes the formation of multiple members of the Y″ series of fragment ions following low energy collision-activated decomposition (CAD) of the protonated peptides. Removal of the arginine residue abolishes the effect, which is also attenuated by conversion of the arginine to dimethylpyrimidylornithine. The data indicate the importance of an intraionic interaction between the cysteic acid and arginine side-chains. Low energy CAD of peptides which include cysteic acid and histidine residues, also provides evidence for intraionic interactions. It is proposed that these findings are consistent with the general hypothesis that an increased heterogeneity (with respect to location of charge) of the protonated peptide precursor ion population is beneficial to the generation of a high yield of product ions via several charge-directed, low energy fragmentation pathways. Furthermore, these data emphasize the significance of gas-phase conformations of protonated peptides in determining fragmentation pathways

    Epitope mapping of monoclonal antibodies by mass spectrometry: Identification of protein antigens in complex biological systems

    Get PDF
    We describe the application of immunoaffinity extraction and mass spectrometry to the analysis of Ty1 Gag protein in lysates of Saccharomyces cerevisiae. A magnetic bead-conjugated monoclonal antibody was used to achieve selective extraction, the specificity of which was established by matrix-assisted laser desorption/ionization mass spectrometric (MS) analysis of an extract of the lysate of cells overexpressing the Ty1 Gag protein. MS analysis of similar extracts of lysates following tryptic hydrolysis confirmed selective extraction of the epitope-containing peptide fragment. Sufficient sensitivity was achieved to allow the application of this approach to the analysis of lysates of wild-type cells. Furthermore, the sequence of the epitope-containing peptide was confirmed by electrospray-tandem MS. To our knowledge, this constitutes the first report of the application of immunoaffinity extraction and tandem MS analysis to the characterization of an antigen recovered from a complex cellular system

    Evidence for Structural Variants of a- and b-Type Peptide Fragment Ions Using Combined Ion Mobility/Mass Spectrometry

    Get PDF
    Tandem mass spectrometry (MS/MS) of peptides plays a key role in the field of proteomics, and an understanding of the fragmentation mechanisms involved is vital for data interpretation. Not all the fragment ions observed by low-energy collision-induced dissociation of protonated peptides are readily explained by the generally accepted structures for a- and b-ions. The possibility of a macrocyclic structure for b-type ions has been recently proposed. In this study, we have undertaken investigations of linear protonated YAGFL-NH2, N-acetylated-YAGFL-NH2, and cyclo-(YAGFL) peptides and their fragments using a combination of ion mobility (IM) separation and mass spectrometry. The use of IM in this work both gives insight into relative structural forms of the ion species and crucial separation of isobaric species. Our study provides compelling evidence for the formation of a stable macrocyclic structure for the b5 ion generated by fragmentation of protonated linear YAGFL-NH2. Additionally we demonstrate that the a4 ion fragment of protonated YAGFL-NH2 has at least two structures; one of which is attributable to a macrocyclic structure on the basis of its subsequent fragmentation. More generally, this work emphasizes the value of combined IM-MS/MS in probing the detailed fragmentation mechanisms of peptide ions, and illustrates the use of combined ion mobility/collisional activation/mass spectrometry analysis in achieving an effective enhancement of the resolution of the mobility separator

    Peptide scrambling during collision-induced dissociation is influenced by N-terminal residue basicity

    Get PDF
    ‘Bottom up’ proteomic studies typically use tandem mass spectrometry data to infer peptide ion sequence, enabling identification of the protein whence they derive. The majority of such studies employ collision-induced dissociation (CID) to induce fragmentation of the peptide structure giving diagnostic b-, y-, and a- ions. Recently, rearrangement processes that result in scrambling of the original peptide sequence during CID have been reported for these ions. Such processes have the potential to adversely affect ion accounting (and thus scores from automated search algorithms) in tandem mass spectra, and in extreme cases could lead to false peptide identification. Here, analysis of peptide species produced by Lys-N proteolysis of standard proteins is performed and sequences that exhibit such rearrangement processes identified. The effect of increasing the gas-phase basicity of the N-terminal lysine residue through derivatization to homoarginine toward such sequence scrambling is then assessed. The presence of a highly basic homoarginine (or arginine) residue at the N-terminus is found to disfavor/inhibit sequence scrambling with a coincident increase in the formation of b(n-1)+H2O product ions. Finally, further analysis of a sequence produced by Lys-C proteolysis provides evidence toward a potential mechanism for the apparent inhibition of sequence scrambling during resonance excitation CID

    Rigorous Determination of the Stoichiometry of Protein Phosphorylation Using Mass Spectrometry

    Get PDF
    Quantification of the stoichiometry of phosphorylation is usually achieved using a mixture of phosphatase treatment and differential isotopic labeling. Here, we introduce a new approach to the concomitant determination of absolute protein concentration and the stoichiometry of phosphorylation at predefined sites. The method exploits QconCAT to quantify levels of phosphorylated and nonphosphorylated peptide sequences in a phosphoprotein. The nonphosphorylated sequence is used to determine the absolute protein quantity and serves as a reference to calculate the extent of phosphorylation at the second peptide. Thus, the stoichiometry of phosphorylation and the absolute protein concentration can be determined accurately in a single experiment

    PepSeeker: a database of proteome peptide identifications for investigating fragmentation patterns

    Get PDF
    Proteome science relies on bioinformatics tools to characterize proteins via their proteolytic peptides which are identified via characteristic mass spectra generated after their ions undergo fragmentation in the gas phase within the mass spectrometer. The resulting secondary ion mass spectra are compared with protein sequence databases in order to identify the amino acid sequence. Although these search tools (e.g. SEQUEST, Mascot, X!Tandem, Phenyx) are frequently successful, much is still not understood about the amino acid sequence patterns which promote/protect particular fragmentation pathways, and hence lead to the presence/absence of particular ions from different ion series. In order to advance this area, we have developed a database, PepSeeker (), which captures this peptide identification and ion information from proteome experiments. The database currently contains >185 000 peptides and associated database search information. Users may query this resource to retrieve peptide, protein and spectral information based on protein or peptide information, including the amino acid sequence itself represented by regular expressions coupled with ion series information. We believe this database will be useful to proteome researchers wishing to understand gas phase peptide ion chemistry in order to improve peptide identification strategies. Questions can be addressed to [email protected]
    • …
    corecore