41 research outputs found

    C. elegans HAM-1 positions the cleavage plane and regulates apoptosis in asymmetric neuroblast divisions

    Get PDF
    AbstractAsymmetric cell division occurs when a mother cell divides to generate two distinct daughter cells, a process that promotes the generation of cellular diversity in metazoans. During Caenorhabditis elegans development, the asymmetric divisions of neural progenitors generate neurons, neural support cells and apoptotic cells. C. elegans HAM-1 is an asymmetrically distributed cortical protein that regulates several of these asymmetric neuroblast divisions. Here, we show that HAM-1 is a novel protein and define residues important for HAM-1 function and distribution to the cell cortex. Our phenotypic analysis of ham-1 mutant embryos suggests that HAM-1 controls only neuroblast divisions that produce apoptotic cells. Moreover, ham-1 mutant embryos contain many unusually large cell-death corpses. An investigation of this corpse phenotype revealed that it results from a reversal of neuroblast polarity. A misplacement of the neuroblast cleavage plane generates daughter cells of abnormal size, with the apoptotic daughters larger than normal. Thus, HAM-1 regulates the position of the cleavage plane, apoptosis and mitotic potential in C. elegans asymmetric cell divisions

    μ2 adaptin facilitates but is not essential for synaptic vesicle recycling in Caenorhabditis elegans

    Get PDF
    Synaptic vesicles must be recycled to sustain neurotransmission, in large part via clathrin-mediated endocytosis. Clathrin is recruited to endocytic sites on the plasma membrane by the AP2 adaptor complex. The medium subunit (μ2) of AP2 binds to cargo proteins and phosphatidylinositol-4,5-bisphosphate on the cell surface. Here, we characterize the apm-2 gene (also called dpy-23), which encodes the only μ2 subunit in the nematode Caenorhabditis elegans. APM-2 is highly expressed in the nervous system and is localized to synapses; yet specific loss of APM-2 in neurons does not affect locomotion. In apm-2 mutants, clathrin is mislocalized at synapses, and synaptic vesicle numbers and evoked responses are reduced to 60 and 65%, respectively. Collectively, these data suggest AP2 μ2 facilitates but is not essential for synaptic vesicle recycling

    Caenorhabditis elegans Flamingo Cadherin fmi-1 Regulates GABAergic Neuronal Development

    Get PDF
    This is the publisher's version, also available electronically from http://www.jneurosci.org/content/32/12/4196.In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding

    The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans

    Get PDF
    BACKGROUND: The nematode Caenorhabditis elegans has been used extensively to identify the genetic requirements for proper nervous system development and function. Key to this process is the direction of vesicles to the growing axons and dendrites, which is required for growth-cone extension and synapse formation in the developing neurons. The contribution and mechanism of membrane traffic in neuronal development are not fully understood, however. RESULTS: We show that the C. elegans gene unc-69 is required for axon outgrowth, guidance, fasciculation and normal presynaptic organization. We identify UNC-69 as an evolutionarily conserved 108-amino-acid protein with a short coiled-coil domain. UNC-69 interacts physically with UNC-76, mutations in which produce similar defects to loss of unc-69 function. In addition, a weak reduction-of-function allele, unc-69(ju69), preferentially causes mislocalization of the synaptic vesicle marker synaptobrevin. UNC-69 and UNC-76 colocalize as puncta in neuronal processes and cooperate to regulate axon extension and synapse formation. The chicken UNC-69 homolog is highly expressed in the developing central nervous system, and its inactivation by RNA interference leads to axon guidance defects. CONCLUSION: We have identified a novel protein complex, composed of UNC-69 and UNC-76, which promotes axonal growth and normal presynaptic organization in C. elegans. As both proteins are conserved through evolution, we suggest that the mammalian homologs of UNC-69 and UNC-76 (SCOCO and FEZ, respectively) may function similarly

    The Caenorhabditis elegans Ror RTK CAM-1 Inhibits EGL-20/Wnt Signaling in Cell Migration

    No full text
    During Caenorhabditis elegans development, the HSN neurons and the right Q neuroblast and its descendants undergo long-range anteriorly directed migrations. Both of these migrations require EGL-20, a C. elegans Wnt homolog. Through a canonical Wnt signaling pathway, EGL-20/Wnt transcriptionally activates the Hox gene mab-5 in the left Q neuroblast and its descendants, causing the cells to migrate posteriorly. In this report, we show that CAM-1, a Ror receptor tyrosine kinase (RTK) family member, inhibits EGL-20 signaling. Excess EGL-20, like loss of cam-1, caused the HSNs to migrate too far anteriorly. Excess CAM-1, like loss of egl-20, shifted the final positions of the HSNs posteriorly and caused the left Q neuroblast descendants to migrate anteriorly. The reversal in the migration of the left Q neuroblast and its descendants resulted from a failure to express mab-5, an egl-20 mutant phenotype. Our data suggest that CAM-1 negatively regulates EGL-20

    The Caenorhabditis elegans gene ham-1 regulates daughter cell size asymmetry primarily in divisions that produce a small anterior daughter cell.

    No full text
    C. elegans cell divisions that produce an apoptotic daughter cell exhibit Daughter Cell Size Asymmetry (DCSA), producing a larger surviving daughter cell and a smaller daughter cell fated to die. Genetic screens for mutants with defects in apoptosis identified several genes that are also required for the ability of these divisions to produce daughter cells that differ in size. One of these genes, ham-1, encodes a putative transcription factor that regulates a subset of the asymmetric cell divisions that produce an apoptotic daughter cell. In a survey of C. elegans divisions, we found that ham-1 mutations affect primarily anterior/posterior divisions that produce a small anterior daughter cell. The affected divisions include those that generate an apoptotic cell as well as those that generate two surviving cells. Our findings suggest that HAM-1 primarily promotes DCSA in a certain class of asymmetric divisions

    Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration.

    No full text
    We report here that WASP and Ena/VASP family proteins play overlapping roles in C. elegans morphogenesis and neuronal cell migration. Specifically, these studies demonstrate that UNC-34/Ena plays a role in morphogenesis that is revealed only in the absence of WSP-1 function and that WSP-1 has a role in neuronal cell migration that is revealed only in the absence of UNC-34/Ena activity. To identify additional genes that act in parallel to unc-34/ena during morphogenesis, we performed a screen for synthetic lethals in an unc-34 null mutant background utilizing an RNAi feeding approach. To our knowledge, this is the first reported RNAi-based screen for genetic interactors. As a result of this screen, we identified a second C. elegans WASP family protein, wve-1, that is most homologous to SCAR/WAVE proteins. Animals with impaired wve-1 function display defects in gastrulation, fail to undergo proper morphogenesis, and exhibit defects in neuronal cell migrations and axon outgrowth. Reducing wve-1 levels in either unc-34/ena or wsp-1 mutant backgrounds also leads to a significant enhancement of the gastrulation and morphogenesis defects. Thus, unc-34/ena, wsp-1, and wve-1 play overlapping roles during embryogenesis and unc-34/ena and wsp-1 play overlapping roles in neuronal cell migration. These observations show that WASP and Ena/VASP proteins can compensate for each other in vivo and provide the first demonstration of a role for Ena/VASP proteins in gastrulation and morphogenesis. In addition, our results provide the first example of an in vivo role for WASP family proteins in neuronal cell migrations and cytokinesis in metazoans

    The T-Box Gene tbx-2, the Homeobox Gene egl-5 and the Asymmetric Cell Division Gene ham-1 Specify Neural Fate in the HSN/PHB Lineage

    No full text
    Understanding how neurons adopt particular fates is a fundamental challenge in developmental neurobiology. To address this issue, we have been studying a Caenorhabditis elegans lineage that produces the HSN motor neuron and the PHB sensory neuron, sister cells produced by the HSN/PHB precursor. We have previously shown that the novel protein HAM-1 controls the asymmetric neuroblast division in this lineage. In this study we examine tbx-2 and egl-5, genes that act in concert with ham-1 to regulate HSN and PHB fate. In screens for mutants with abnormal HSN development, we identified the T-box protein TBX-2 as being important for both HSN and PHB differentiation. TBX-2, along with HAM-1, regulates the migrations of the HSNs and prevents the PHB neurons from adopting an apoptotic fate. The homeobox gene egl-5 has been shown to regulate the migration and later differentiation of the HSN. While mutations that disrupt its function show no obvious role for EGL-5 in PHB development, loss of egl-5 in a ham-1 mutant background leads to PHB differentiation defects. Expression of EGL-5 in the HSN/PHB precursor but not in the PHB neuron suggests that EGL-5 specifies precursor fate. These observations reveal a role for both EGL-5 and TBX-2 in neural fate specification in the HSN/PHB lineage
    corecore