266 research outputs found

    Time-dependent tunneling of Bose-Einstein condensates

    Get PDF
    The influence of atomic interactions on time-dependent tunneling processes of Bose-Einstein condensates is investigated. In a variety of contexts the relevant condensate dynamics can be described by a Landau-Zener equation modified by the appearance of nonlinear contributions. Based on this equation it is discussed how the interactions modify the tunneling probability. In particular, it is shown that for certain parameter values, due to a nonlinear hysteresis effect, complete adiabatic population transfer is impossible however slowly the resonance is crossed. The results also indicate that the interactions can cause significant increase as well as decrease of tunneling probabilities which should be observable in currently feasible experiments.Comment: 8 pages, 5 figure

    Two-dimensional atom trapping in field-induced adiabatic potentials

    Get PDF
    We show how to create a novel two-dimensional trap for ultracold atoms from a conventional magnetic trap. We achieve this by utilizing rf-induced adiabatic potentials to enhance the trapping potential in one direction. We demonstrate the loading process and discuss the experimental conditions under which it might be possible to prepare a 2D Bose condensate. A scheme for the preparation of coherent matterwave bubbles is also discussed

    Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials

    Get PDF
    We discuss a method to create two-dimensional traps as well as atomic shell, or bubble, states for a Bose-Einstein condensate initially prepared in a conventional magnetic trap. The scheme relies on the use of time-dependent, radio frequency-induced adiabatic potentials. These are shown to form a versatile and robust tool to generate novel trapping potentials. Our shell states take the form of thin, highly stable matter-wave bubbles and can serve as stepping-stones to prepare atoms in highly-excited trap eigenstates or to study `collapse and revival phenomena'. Their creation requires gravitational effects to be compensated by applying additional optical dipole potentials. However, in our scheme gravitation can also be exploited to provide a route to two-dimensional atom trapping. We demonstrate the loading process for such a trap and examine experimental conditions under which a 2D condensate may be prepared.Comment: 16 pages, 10 figure

    RF spectroscopy in a resonant RF-dressed trap

    Full text link
    We study the spectroscopy of atoms dressed by a resonant radiofrequency (RF) field inside an inhomogeneous magnetic field and confined in the resulting adiabatic potential. The spectroscopic probe is a second, weak, RF field. The observed line shape is related to the temperature of the trapped cloud. We demonstrate evaporative cooling of the RF-dressed atoms by sweeping the frequency of the second RF field around the Rabi frequency of the dressing field.Comment: 7 figures, 8 pages; to appear in J. Phys.

    Adiabatic entanglement in two-atom cavity QED

    Get PDF
    We analyse the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time dependent couplings which represent the spatial dependence of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behaviour which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and C-NOT gates with atomic qubits.Comment: 15 pages, 7 figure

    Exact boundary conditions at finite distance for the time-dependent Schrodinger equation

    Get PDF
    Exact boundary conditions at finite distance for the solutions of the time-dependent Schrodinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples.Comment: Latex.tar.gz file, 20 pages, 9 figure

    The validity of the Landau-Zener model for output coupling of Bose condensates

    Full text link
    We investigate the validity of the Landau-Zener model in describing the output coupling of Bose condensates from magnetic traps by a chirped radiofrequency field. The predictions of the model are compared with the numerical solutions of the Gross-Pitaevskii equation. We find a dependence on the chirp direction, and also quantify the role of gravitation.Comment: 4 pages, Late

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    Nonlinear level crossing models

    Get PDF
    We examine the effect of nonlinearity at a level crossing on the probability for nonadiabatic transitions PP. By using the Dykhne-Davis-Pechukas formula, we derive simple analytic estimates for PP for two types of nonlinear crossings. In the first type, the nonlinearity in the detuning appears as a {\it perturbative} correction to the dominant linear time dependence. Then appreciable deviations from the Landau-Zener probability PLZP_{LZ} are found to appear for large couplings only, when PP is very small; this explains why the Landau-Zener model is often seen to provide more accurate results than expected. In the second type of nonlinearity, called {\it essential} nonlinearity, the detuning is proportional to an odd power of time. Then the nonadiabatic probability PP is qualitatively and quantitatively different from PLZP_{LZ} because on the one hand, it vanishes in an oscillatory manner as the coupling increases, and on the other, it is much larger than PLZP_{LZ}. We suggest an experimental situation when this deviation can be observed.Comment: 9 pages final postscript file, two-column revtex style, 5 figure
    corecore