5,320 research outputs found
Neural Nets and Star/Galaxy Separation in Wide Field Astronomical Images
One of the most relevant problems in the extraction of scientifically useful
information from wide field astronomical images (both photographic plates and
CCD frames) is the recognition of the objects against a noisy background and
their classification in unresolved (star-like) and resolved (galaxies) sources.
In this paper we present a neural network based method capable to perform both
tasks and discuss in detail the performance of object detection in a
representative celestial field. The performance of our method is compared to
that of other methodologies often used within the astronomical community.Comment: 6 pages, to appear in the proceedings of IJCNN 99, IEEE Press, 199
Lower mass normalization of the stellar initial mass function for dense massive early-type galaxies at z ~ 1.4
This paper aims at understanding if the normalization of the stellar initial
mass function (IMF) of massive early-type galaxies (ETGs) varies with cosmic
time and/or with mean stellar mass density Sigma (M*/2\pi Re^2). For this
purpose we collected a sample of 18 dense (Sigma>2500 M_sun/pc^2) ETGs at
1.2<z<1.6 with available velocity dispersion sigma_e. We have constrained their
mass-normalization by comparing their true stellar masses (M_true) derived
through virial theorem, hence IMF independent, with those inferred through the
fit of the photometry assuming a reference IMF (M_ref). Adopting the virial
estimator as proxy of the true stellar mass, we have assumed for these ETGs
zero dark matter (DM). However, dynamical models and numerical simulations of
galaxy evolution have shown that the DM fraction within Re in dense high-z ETGs
is negligible. We have considered the possible bias of virial theorem in
recovering the total masses and have shown that for dense ETGs the virial
masses are in agreement with those derived through more sophisticated dynamical
models. The variation of the parameter Gamma = M_true/M_ref with sigma_e shows
that, on average, dense ETGs at = 1.4 follow the same IMF-sigma_e trend of
typical local ETGs, but with a lower mass-normalization. Nonetheless, once the
IMF-sigma_e trend we have found for high-z dense ETGs is compared with that of
local ETGs with similar Sigma and sigma_e, they turn out to be consistent. The
similarity between the IMF-sigma_e trends of dense high-z and low-z ETGs over 9
Gyr of evolution and their lower mass-normalization with respect to the mean
value of local ETGs suggest that, independently on formation redshift, the
physical conditions characterizing the formation of a dense spheroid lead to a
mass spectrum of new formed stars with an higher ratio of high- to low-mass
stars with respect to the IMF of normal local ETGs.Comment: 9 pages, 4 figures, accepted for pubblication in A&A, updated to
match final journal versio
The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies
The aim of our analysis is twofold. On the one hand we are interested in
addressing whether a sample of ETGs morphologically selected differs from a
sample of passive galaxies in terms of galaxy statistics. On the other hand we
study how the relative abundance of galaxies, the number density and the
stellar mass density for different morphological types change over the redshift
range 0.6<z<2.5. From the 1302 galaxies brighter than Ks=22 selected from the
GOODS-MUSIC catalogue, we classified the ETGs on the basis of their morphology
and the passive galaxies on the basis of their sSFR. We proved how the
definition of passive galaxy depends on the IMF adopted in the models and on
the assumed sSFR threshold. We find that ETGs cannot be distinguished from the
other morphological classes on the basis of their low sSFR, irrespective of the
IMF adopted in the models. Using the sample of 1302 galaxies morphologically
classified into spheroidal galaxies (ETGs) and not spheroidal galaxies (LTGs),
we find that their fractions are constant over the redshift range 0.6<z<2.5
(20-30% ETGs vs 70-80% LTGs). However, at z<1 these fractions change among the
population of the most massive (M*>=10^(11) M_sol) galaxies, with the fraction
of massive ETGs rising up to 40% and the fraction of massive LTGs decreasing
down to 60%. Moreover, we find that the number density and the stellar mass
density of the whole population of massive galaxies increase almost by a factor
of ~10 between 0.6<z<2.5, with a faster increase of these densities for the
ETGs than for the LTGs. Finally, we find that the number density of the
highest-mass galaxies (M*>3-4x10^(11) M_sol) both ETGs and LTGs do not increase
since z~2.5, contrary to the lower mass galaxies. This suggests that the
population of the most massive galaxies formed at z>2.5-3 and that the assembly
of such high-mass galaxies is not effective at lower redshift.Comment: 15 pages, 14 figures. Published in A&
Double modelling of the dynamic of activities in rural municipalities.
Land use choices and activity prevalence in a selected territory are determined by individual preferences constrained by the characteristic of the analysed zone: population density, soil properties, urbanization level and other similar factors can drive individuals to make different kind of decisions about their occupations. Different approaches can be used to describe land use change, occupation prevalence and their reciprocal inter-relation. In this paper we describe two different kinds of approaches: an agent based model, centred on individual choices and an aggregated model describing the evolution of activity prevalence in terms of coupled differential equation. We use and we compare the two models to analyse the effect of territorial constraints, like the lack of employment in determined sectors, on the possible activity prevalence scenarios.SBIAgro 2009
- …