14 research outputs found

    Tobacco Smoke and CYP1A2 Activity in a US Population with Normal Liver Enzyme Levels

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is common among 30% of American adults. Former and current smokers are at higher risk for NAFLD compared to never smokers. The ratio of urine caffeine metabolites to caffeine intake—namely, urine caffeine metabolite indices—has previously been used as a proxy for CYP1A2 activity, which is one of the main liver metabolizing enzymes. CYP1A2 activity is associated with NAFLD progression. No studies to our knowledge have examined the associations of liver enzymes, smoking intensity, and secondhand smoke (SES) with CYP1A2 activity (using caffeine metabolite indices) across smoking status. We analyzed national representative samples from the 2009–2010 National Health and Nutrition Examination Survey (NHANES). Interestingly, even within a normal range, several liver enzymes were associated with caffeine metabolite indices, and patterns of many of these associations varied by smoking status. For instance, within a normal range, aspartate aminotransferase (AST) in never smokers and bilirubin in current smokers were inversely associated with 1-methyluric acid and 5-acetylamino-6-amino-3-methyluracil (URXAMU). Furthermore, we observed a common pattern: across all smoking statuses, higher AST/alanine aminotransferase (AST/ALT) was associated with 1-methyluric acid and URXAMU. Moreover, in current smokers, increased lifelong smoking intensity was associated with reduced caffeine metabolite indices, but acute cigarette exposure as measured by SES levels was associated with increased caffeine metabolite indices among never smokers. In summary, commonly used liver enzyme tests can reflect the CYP1A2 activity even within a normal range, but the selection of these enzymes depends on the smoking status; the associations between smoking and the CYP1A2 activity not only depend on the intensity but also the duration of tobacco exposure

    Identification of Marker Genes in Infectious Diseases from ScRNA-seq Data Using Interpretable Machine Learning

    No full text
    A common result of infection is an abnormal immune response, which may be detrimental to the host. To control the infection, the immune system might undergo regulation, therefore producing an excess of either pro-inflammatory or anti-inflammatory pathways that can lead to widespread inflammation, tissue damage, and organ failure. A dysregulated immune response can manifest as changes in differentiated immune cell populations and concentrations of circulating biomarkers. To propose an early diagnostic system that enables differentiation and identifies the severity of immune-dysregulated syndromes, we built an artificial intelligence tool that uses input data from single-cell RNA sequencing. In our results, single-cell transcriptomics successfully distinguished between mild and severe sepsis and COVID-19 infections. Moreover, by interpreting the decision patterns of our classification system, we identified that different immune cells upregulating or downregulating the expression of the genes CD3, CD14, CD16, FOSB, S100A12, and TCRɣδ can accurately differentiate between different degrees of infection. Our research has identified genes of significance that effectively distinguish between infections, offering promising prospects as diagnostic markers and providing potential targets for therapeutic intervention

    Associations of daily steps and step intensity with incident diabetes in a prospective cohort study of older women : The OPACH Study

    No full text
    OBJECTIVE The primary aim was to assess associations between total steps per day and incident diabetes, whereas the secondary aim was to assess whether the intensity and/or cadence of steps is associated with incident diabetes. RESEARCH DESIGN AND METHODS Women without physician-diagnosed diabetes (n = 4,838; mean [SD] age 78.9 [6.7] years) were followed up to 6.9 years; 395 developed diabetes. Hip-worn ActiGraph GT3X+ accelerometers worn for 1 week enabled measures of total, light-intensity, and moderate- to vigorous-intensity (MV-intensity) steps per day. Using Cox proportional hazards analysis we modeled adjusted change in the hazard rate for incident diabetes associated with total, light-intensity, and MV-intensity steps per day. We further estimated the proportion of the steps-diabetes association mediated by BMI. RESULTS On average, participants took 3,729 (SD 2,114) steps/day, of which 1,875 (791) were light-intensity steps and 1,854 ± 1,762 were MV-intensity. More steps per day were associated with a lower hazard rate for incident diabetes. Confounder-adjusted models for a 2,000 steps/day increment yielded hazard ratio (HR) 0.88 (95% CI 0.78–1.00; P = 0.046). After further adjustment for BMI, HR was 0.90 (95% CI 0.80–1.02; P = 0.11). BMI did not significantly mediate the steps-diabetes association (proportion mediated = 17.7% [95% CI −55.0 to 142.0]; P = 0.09]). The relationship between MV-intensity steps per day (HR 0.86 [95% CI 0.74–1.00]; P = 0.04) and incident diabetes was stronger than for light-intensity steps per day (HR 0.97 [95% CI 0.73–1.29]; P = 0.84). CONCLUSIONS These findings suggest that for older adults, more steps per day are associated with lower incident diabetes and MV-intensity steps are most strongly associated with a lower hazard of diabetes. This evidence supports that regular stepping is an important risk factor for type 2 diabetes prevention in older adults

    An artificial neural network classification method employing longitudinally monitored immune biomarkers to predict the clinical outcome of critically ill COVID-19 patients

    No full text
    Background The severe form of COVID-19 can cause a dysregulated host immune syndrome that might lead patients to death. To understand the underlying immune mechanisms that contribute to COVID-19 disease we have examined 28 different biomarkers in two cohorts of COVID-19 patients, aiming to systematically capture, quantify, and algorithmize how immune signals might be associated to the clinical outcome of COVID-19 patients. Methods The longitudinal concentration of 28 biomarkers of 95 COVID-19 patients was measured. We performed a dimensionality reduction analysis to determine meaningful biomarkers for explaining the data variability. The biomarkers were used as input of artificial neural network, random forest, classification and regression trees, k-nearest neighbors and support vector machines. Two different clinical cohorts were used to grant validity to the findings. Results We benchmarked the classification capacity of two COVID-19 clinicals studies with different models and found that artificial neural networks was the best classifier. From it, we could employ different sets of biomarkers to predict the clinical outcome of COVID-19 patients. First, all the biomarkers available yielded a satisfactory classification. Next, we assessed the prediction capacity of each protein separated. With a reduced set of biomarkers, our model presented 94% accuracy, 96.6% precision, 91.6% recall, and 95% of specificity upon the testing data. We used the same model to predict 83% and 87% (recovered and deceased) of unseen data, granting validity to the results obtained. Conclusions In this work, using state-of-the-art computational techniques, we systematically identified an optimal set of biomarkers that are related to a prediction capacity of COVID-19 patients. The screening of such biomarkers might assist in understanding the underlying immune response towards inflammatory diseases
    corecore