159 research outputs found

    Characterization of cell cycle phase-based microRNAs in pluripotency and differentiation

    Get PDF
    published_or_final_versio

    Haplotype Analysis Reveals a Possible Founder Effect of RET Mutation R114H for Hirschsprung's Disease in the Chinese Population

    Get PDF
    Background Hirschsprung's disease (HSCR) is a congenital disorder associated with the lack of intramural ganglion cells in the myenteric and sub-mucosal plexuses along varying segments of the gastrointestinal tract. The RET gene is the major gene implicated in this gastrointestinal disease. A highly recurrent mutation in RET (RETR114H) has recently been identified in ~6-7% of the Chinese HSCR patients which, to date, has not been found in Caucasian patients or controls nor in Chinese controls. Due to the high frequency of RETR114H in this population, we sought to investigate whether this mutation may be a founder HSCR mutation in the Chinese population. Methodology and Principal Findings To test whether all RETR114H were originated from a single mutational event, we predicted the approximate age of RETR114H by applying a Bayesian method to RET SNPs genotyped in 430 Chinese HSCR patients (of whom 25 individuals had the mutation) to be between 4-23 generations old depending on growth rate. We reasoned that if RETR114H was a founder mutation then those with the mutation would share a haplotype on which the mutation resides. Including SNPs spanning 509.31 kb across RET from a recently obtained 500 K genome-wide dataset for a subset of 181 patients (14 RETR114H patients), we applied haplotype estimation methods to determine whether there were any segments shared between patients with RETR114H that are not present in those without the mutation or controls. Analysis yielded a 250.2 kb (51 SNP) shared segment over the RET gene (and downstream) in only those patients with the mutation with no similar segments found among other patients. Conclusions This suggests that RETR114H is a founder mutation for HSCR in the Chinese population. © 2010 Cornes et al.published_or_final_versio

    Comprehensive comparison of copy number variations detection using Illumina Omni 2.5M and Affymetrix CytoScan® arrays

    Get PDF
    Posters: Genome Structure, Variation and Function: abstract no. 552TStructural variation has been recognized as a genetic risk factor contributing to human diseases, and in particular, congenital disorders. Smaller scale copy number variations (CNVs) have also been linked to a number of neurodevelopmental phenotypes, including intellectual disability as well as autism spectrum disorders. The precise detection of CNVs is therefore necessary for ...postprin

    Patient complexity and genotype-phenotype correlations in biliary atresia: a cross-sectional analysis

    Get PDF
    published_or_final_versio

    Cost effective assay choice for rare disease study designs

    Get PDF
    High throughput assays tend to be expensive per subject. Often studies are limited not so much by the number of subjects available as by assay costs, making assay choice a critical issue. We have developed a framework for assay choice that maximises the number of true disease causing mechanisms ‘seen’, given limited resources. Although straightforward, some of the ramifications of our methodology run counter to received wisdom on study design. We illustrate our methodology with examples, and have built a website allowing calculation of quantities of interest to those designing rare disease studies.published_or_final_versio

    Bilateral pheochromocytomas in MEN2A syndrome: a two-institution experience

    Get PDF
    postprin

    HOXB5 Cooperates with NKX2-1 in the Transcription of Human RET

    Get PDF
    The enteric nervous system (ENS) regulates peristaltic movement of the gut, and abnormal ENS causes Hirschsprung's disease (HSCR) in newborns. HSCR is a congenital complex genetic disorder characterised by a lack of enteric ganglia along a variable length of the intestine. The receptor tyrosine kinase gene (RET) is the major HSCR gene and its expression is crucial for ENS development. We have previously reported that (i) HOXB5 transcription factor mediates RET expression, and (ii) mouse with defective HOXB5 activity develop HSCR phenotype. In this study, we (i) elucidate the underlying mechanisms that HOXB5 mediate RET expression, and (ii) examine the interactions between HOXB5 and other transcription factors implicated in RET expression. We show that human HOXB5 binds to the promoter region 5′ upstream of the binding site of NKX2-1 and regulates RET expression. HOXB5 and NKX2-1 form a protein complex and mediate RET expression in a synergistic manner. HSCR associated SNPs at the NKX2-1 binding site (-5G>A rs10900296; -1A>C rs10900297), which reduce NKX2-1 binding, abolish the synergistic trans-activation of RET by HOXB5 and NKX2-1. In contrast to the synergistic activation of RET with NKX2-1, HOXB5 cooperates in an additive manner with SOX10, PAX3 and PHOX2B in trans-activation of RET promoter. Taken together, our data suggests that HOXB5 in coordination with other transcription factors mediates RET expression. Therefore, defects in cis- or trans-regulation of RET by HOXB5 could lead to reduction of RET expression and contribute to the manifestation of the HSCR phenotype

    Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function

    Get PDF
    ACKGROUND & AIMS: Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. METHODS: We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET+/- and RET-/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. RESULTS: ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. CONCLUSIONS: We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can be used to identify disease-associated mutations and determine how they affect cell functions and contribute to pathogenesis.postprin

    Actionable secondary findings from whole-genome sequencing of 954 East Asians

    Get PDF

    Gene network analysis of candidate loci for human anorectal malformations

    Get PDF
    Posters: Complex Traits and Polygenic Disorders: abstract no. 1027TAnorectal malformations (ARMs) are birth defects that require surgery and carry significant chronic morbidity. Our genome-wide copy number variation (CNV) study had provided a wealth of candidate loci. To find out whether these candidate loci are related to important developmental pathways, we have ...postprin
    • …
    corecore