1 research outputs found

    Brain tissue recovery in obstructive congenital hydrocephalus after intraventricular transplantation of mesenchymal stem cells

    Get PDF
    Introduction: Bone marrow-derived mesenchymal stem cells (BM-MSC) are a potential therapeutic tool due to their ability for migrating and producing neuroprotector factors when transplanted. The aim of this study was to evaluate the short-time effects of a BM-MSC experimental therapy in the hyh mouse model with severe obstructive hydrocephalus. Methods: BM-MSC were characterized in vitro and then injected into the ventricles of hyh mice. Wild-type and saline-injected hyh mice were used as controls. Samples were studied by analyzing and comparing mRNA, protein and metabolites level expression in control and damaged tissue. Results: Undifferentiated BM-MSC were found to: i) spread into the periventricular astrocyte reaction region after four days post-injection, and, ii) be producing neuroprotector factors (GDNF and VEGF). Astrocytes located in periventricular edematous region increased their aquaporin-4 expression, as well as Slit2 expression (neuroprotective and anti-inflammatory molecule). There was also a significant reduction of osmolytes such as taurine and neuroexcytotoxic glutamate. Halved apoptotic cell death was detected in the periventricular walls. Conclusions: BM-MSC lead to recovery of the severe neurodegenerative conditions associated to congenital hydrocephalus mediated by reactive astrocytes.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. Supported by Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech, and PI15/0619 (ISCIII/FEDER)
    corecore