14 research outputs found

    Nano-selenium supplementation increases selenoprotein (Sel) gene expression profiles and milk selenium concentration in lactating dairy cows

    No full text
    Supplementation with selenium is common for dairy cows, but the importance of selenium source is not clear. This study aimed to compare nano-selenium (Nano-Se) and sodium selenite supplements for dairy cows on lactation performance, milk Se levels and selenoprotein (Sel) gene expression. Twelve multiparous Holstein cows were randomly divided into two groups: a control group fed a basal diet plus 0.30 mg Se/kg of DM as sodium selenite or Nano-Se for 30 days. Dry matter intake, milk yield and composition were not affected by dietary Se source (P > 0.05); however, the milk total Se levels and milk glutathione peroxidase (GSH-Px) activities were higher with Nano-Se supplementation than sodium selenite (P < 0.05). At the end of the experiment, Nano-Se supplementation significantly increased plasma Se levels and GSH-Px activity, compared with the sodium selenite supplement. The mRNA expression levels of glutathione peroxidase 1, 2 and 4; thioredoxin reductase 2 and 3; and selenoproteins W, T, K and F were markedly upregulated (P < 0.05) in the mammary gland of the Nano-Se group. Thus, the source of selenium plays an important role in the antioxidant status and in particular the Sel gene expression in the mammary glands of dairy cows, both being stimulated by nano sources

    In Vitro Gene Expression Responses of Bovine Rumen Epithelial Cells to Different pH Stresses

    No full text
    Ruminal acidosis often occurs in production, which greatly affects animal health and production efficiency. Subacute rumen acidosis (SARA) occurs when rumen pH drops rapidly to 5.5–5.8, and acute rumen acidosis (ARA) occurs when rumen pH drops below 5.0, but the molecular regulation mechanism of the rumen epithelium after the rapid decrease in pH is still unclear. Bovine rumen epithelial cells (BRECs) were cultured at pH = 7.4 (control), 5.5 (SARA), and 4.5 (ARA). Transcriptome and metabolomic methods were used to obtain the molecular-based response of BRECs to different pH treatments; pH = 4.5 can significantly induce apoptosis of BRECs. The RNA-seq experiments revealed 1381 differently expressed genes (DEGs) in the control vs. SARA groups (p p p < 0.05) in control vs. SARA and 51 in control vs. ARA. Bioinformatics analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database revealed that drug metabolism-cytochrome P450 metabolic and alpha-linolenic acid metabolism changes occurred. These transcriptional and metabolic changes are related to the adaptation of BRECs to low-pH stresses. In conclusion, the combined data analyses presented a worthy strategy to characterize the cellular, transcriptomic, and metabonomic adaptation of BRECs to pH in vitro. We demonstrated transcriptional expression changes in BRECs under pH stress and activation of the molecular mechanisms controlling inflammation

    A Comparison of Rice Husks and Peanut Shells as Bedding Materials on Dairy Cows’ Preferences, Behaviour, and Health

    No full text
    The provision and quality of bedding materials affect the behaviour, welfare, and health of dairy cows. The objective of this study was to evaluate the preference, behaviour, cleanliness, and physiological status of cows on three bedding materials, peanut shells, rice husks, and a combination of two-thirds peanut shells, one-third rice husk. In an initial experiment, 15 nonlactating, pregnant Holstein cows had free access to all 3 bedding treatments for 39 d. Cows spent more time lying down on rice husk (337 min/d) than on peanut–rice combination (212 min/d) and peanut shell (196 min/d) (p &lt; 0.05), and lay down most often on rice husk (4.35 bouts/d) than on peanut shell (2.55 bouts/d) (p &lt; 0.05) but did not differ between peanut shells and peanut–rice combinations in terms of lying time and lying bouts. In Experiment 2, 12 nonlactating cows were used to assess the effects of the 3 bedding materials on dairy cow behaviour, cleanliness, serum indicators, and productivity. The total duration of lying down (PS: 699.1 min/d, PRC: 645.6 min/d, RH: 852.5 min/d), the frequency of bouts of lying down (PS: 8.7 bouts/d, PRC: 7.6 bouts/d, RH: 11.1 bouts/d), and the mean duration of lying bouts (PS: 83.5 min/bouts, PRC: 91.8 min/bouts, RH: 81.4 min/bouts) did not differ between treatments. Similarly, no differences in eating or drinking behaviour of dairy cows were observed. In terms of hygiene, cleanliness scores did not differ between the three bedding materials, but udder and flank cleanliness decreased and improved, respectively. In addition, treatments did not affect serum metabolites or productivity of the cows. In summary, daily behaviour, serum metabolites, and productivity of dairy cows were all within the normal range, and no statistical differences occurred between the three bedding materials, although cows showed a preference for rice husk when given access to all three bedding materials at the same time. Finally, the results suggest that bedding comprised of peanut shells and peanut–rice combinations are all suitable for maintaining the health and comfort of dairy cows

    Effect of Peanut Shell and Rice Husk Bedding for Dairy Cows: An Analysis of Material Properties and Colostrum Microbiota

    No full text
    The aim of this study was to evaluate peanut shells and rice husks as bedding for dairy cows. We analyzed material properties including dry matter, water holding capacity, pH level and bacterial counts. Bedding treatments were compared with a one-way ANOVA using twelve cows split into three groups. Colostrum microbiota was analyzed by sequencing of the V3&ndash;V4 region of the 16S rRNA gene. Dry matter content was higher in rice husks compared with peanut shells. No treatment effects were found for water holding capacity and pH level. Streptococcus agalactia counts in peanut shell bedding were lower than in rice husk bedding, and Pseudomonas aeruginosa counts were not different between beddings. A significant enrichment for Enhydrobacter and Pantoea were detected in the colostrum of cows that used peanut shells compared with other beddings. Colostrum of cows housed on a peanut&ndash;rice combination had a greater relative abundance of Pseudomonas and Corynebacterium than those housed on peanut shells or rice husks. Higher numbers of Bacteroides, Akkermansia, Alistipes, Ruminococcaceae_UCG-014, Coriobacteriaceae_UCG-002 and Intestinimona were found in the colostrum of cows housed on rice husk bedding over other bedding types. These results suggest that bedding types were associated with the growth and diversity of colostrum bacterial loads. In addition, dry matter in peanut shells was lower than found in rice husks, but there was also a lower risk of mastitis for peanut shell bedding than other beddings

    Integration of Long Non-Coding RNA and mRNA Profiling Reveals the Mechanisms of Different Dietary NFC/NDF Ratios Induced Rumen Development in Calves

    No full text
    The aim of the present study was to explore the effects of dietary non-fibrous carbohydrate to neutral detergent fiber (NFC/NDF) ratios on rumen development of calves, and to investigate the mechanisms by integrating of lncRNA and mRNA profiling. Forty-five weaned Charolais hybrid calves [body weight = 94.38 ± 2.50 kg; age = 70 ± 2.69 d] were randomly assigned to 1 of 3 treatment groups with different dietary NFC/NDF ratios: 1.10 (H group), 0.94 (M group) and 0.60 (L group), respectively. The ventral sac of the rumen was sampled for morphological observation and transcriptional sequencing. The average daily gain of calves in the high NFC/NDF ratio group was significantly higher than that in other groups (p p < 0.05). Identified differentially expressed genes that were significantly enriched in pathways closely related to rumen epithelial development included focal adhesion, Wingless-int signaling pathway, thyroid hormone signaling pathway, regulation of actin cytoskeleton and cGMP-PKG signaling pathway. The lncRNA-mRNA network included XLOC_068691 and MOAB, XLOC_023657 and DKK2, XLOC_064331 and PPP1R12A which we interpret to mean they have important regulatory roles in calve rumen development. These findings will serve as a theoretical basis for further analysis of the molecular genetic mechanism of dietary factors affecting rumen development in calves

    Heat Stress Induces Shifts in the Rumen Bacteria and Metabolome of Buffalo

    No full text
    Exposure to the stress (HS) negatively affects physiology, performance, reproduction and welfare of buffalo. However, the mechanisms by which HS negatively affects rumen bacteria and its associated metabolism in buffalo are not well known yet. This study aimed to gain insight into the adaption of bacteria and the complexity of the metabolome in the rumen of six buffalo during HS using 16S rDNA and gas chromatography metabolomics analyses. HS increased respiratory rate (p p p p Lachnospirales, Lachnospiraceae, Lachnospiraceae_NK3A20_group and Clostridia_UCG-014 were significantly (p Lactobacillales, Streptococcus, Leuconostocaceae and Leissella, were significantly (p p < 0.05). Metabolic pathway analysis revealed four key pathways: D-Alanine metabolism; Lysine degradation, Tropane; piperidine and pyridine alkaloid biosynthesis; and Galactose metabolism. In summary, HS may negatively affected rumen fermentation efficiency and changed the composition of rumen community and metabolic function

    Effect of the Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth Performance, Serum Biochemical Indices, Slaughter Performance, and Meat Quality

    No full text
    Maize silage has a high demand for fertilizer and water. As an unconventional feed resource, mulberry silage has the potential to replace most maize silage and to alleviate the shortage of roughage in the mutton sheep industry in China. The purpose of this experiment was to study the effect of the replacement of maize silage and soyabean meal with mulberry silage in the diet of Hu lambs on growth performance, serum biochemical indices, slaughter performance, and meat quality. Ninety-six healthy Hu lambs were randomly divided into four groups with six replicates per group and four lambs per replicate. The amounts of 0, 20, 40, and 60% of maize silage were replaced by mulberry silage in each group (denoted as CON, L, M, and H, respectively). The results showed that replacing maize silage with mulberry silage had no significant effect on the growth performance or the slaughter performance of Hu lambs (p > 0.05). Feeding Hu lambs with mulberry silage significantly reduced serum glucose (GLU) and the blood urea nitrogen (BUN) content (p p p p < 0.05). Based on these findings, it was recommended that 20–40% of maize silage be replaced by mulberry silage in the diet of Hu lambs

    Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity

    No full text
    Maize silage has a significant environmental impact on livestock due to its high requirement for fertilizer and water. Mulberry has the potential to replace much of the large amount of maize silage grown in China, but its feeding value in the conserved form needs to be evaluated. We fed Hu lambs diets with 20&ndash;60% of the maize silage replaced by mulberry silage, adjusting the soybean meal content when increasing the mulberry silage inclusion rate in an attempt to balance the crude protein content of the diets. Mulberry silage had higher crude protein and lower acidic and neutral detergent fiber contents compared to maize silage. Replacing maize silage and soyabean meal with mulberry silage had no effect on the feed intake and growth rate of Hu lambs. However, the rumen pH increased, the acetate to propionate in rumen fluid increased, and the rumen ammonia concentration decreased as mulberry replaced maize silage and soyabean meal. This was associated with an increase in norank_f__F082 bacteria in the rumen. Rumen papillae were shorter when mulberry silage replaced maize silage, which may reflect the reduced neutral detergent fiber (NDF) content of the original silage. In conclusion, mulberry silage can successfully replace maize silage and soyabeans in the diet of Hu lambs without loss of production potential, which could have significant environmental benefits

    Assessing Hutan Simpan Ampang using GIS-based Potential Surface Analysis approach

    Get PDF
    This paper aims to determine potential spaces for sustainable future development at Hutan Simpan Ampang, Ulu Klang, Malaysia. The site is highly valuable due to strategic location and high availability of spaces. However, due to several landslide incidents happened in Ulu Klang over the past decades, the site isn categorised as a landslide-prone area. Therefore, Potential Surface Analysis (PSA) is conducted to determine the potential areas within the site that are safe and suitable for future development. All the factors were processed in Geographic Information System (GIS) through the overlay mapping technique, combining spatial and attribute data to obtain the suitability map. The result found that the majority coverage of the site is not suitable for any future development. There are only a few coverage areas that are suitable for small scale development. However, a combination of the very high suitability area and the high suitability area expanded the opportunity for sustainable future development
    corecore