49,346 research outputs found

    Controlled quantum teleportation and secure direct communication

    Full text link
    We present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state of a 2-level particle is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via an initially shared triplet of entangled particles under the control of the supervisor Charlie. The distributed entangled particles shared by Alice, Bob and Charlie function as a quantum information channel for faithful transmission. We also propose a controlled and secure direct communication scheme by means of this teleportation. After insuring the security of the quantum channel, Alice encodes the secret message directly on a sequence of particle states and transmits them to Bob supervised by Charlie using this controlled quantum teleportation. Bob can read out the encoded message directly by the measurement on his qubit. In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used. The feature of this scheme is that the communication between two sides depends on the agreement of the third side.Comment: 4 page

    Simple scheme for two-qubit Grover search in cavity QED

    Full text link
    Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R) (2002)], we present an alternative way to implement the two-qubit Grover search algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a strong resonant classical field added, our method is insensitive to both the cavity decay and thermal field, and doesn't require that the cavity remain in the vacuum state throughout the procedure. Moreover, the qubit definitions are the same for both atoms, which makes the experiment easier. The strictly numerical simulation shows that our proposal is good enough to demonstrate a two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.

    Phases and phase stabilities of Fe3X alloys (X=Al, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying

    Get PDF
    Mechanical alloying with a Spex 8000 mixer/mill was used to prepare several alloys of the Fe3X composition, where the solutes X were from groups IIB, IIIB, IVB, and VB of the periodic table. Using x-ray diffractometry and Mössbauer spectrometry, we determined the steady-state phases after milling for long times. The tendencies of the alloys to form the bcc phase after milling are predicted well with the modified usage of a Darken–Gurry plot of electronegativity versus metallic radius. Thermal stabilities of some of these phases were studied. In the cases of Fe3Ge and Fe3Sn, there was the formation of transient D03 and B2 order during annealing, although this ordered structure was replaced by equilibrium phases upon further annealing

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings

    Get PDF
    Drought is an important environmental constraint limiting the productivity of many crops worldwide. Seedling tolerance to drought is crucial for crop growth and development through the whole season under water-limited condition. Experiments were conducted to investigate the effects of seedpretreatment by hydrogen peroxide (H2O2) on drought tolerance in wheat (Triticum aestivum L.) seedlings. H2O2-pretreated seeds exhibited 56% higher in germination rate than the water-pretreated seeds (control) under PGE-induced drought condition. Level of H2O2 in seedlings arising from H2O2- treated seeds grown under drought stress was markedly lower than the controls, indicating the operation of antioxidant system in them. These seedlings exhibited increased growth characteristics including higher net photosynthetic rate, leaf area and dry weight. Moreover, H2O2 treatment improved water use efficiency (WUE) and proline level. H2O2 pretreatment enhanced the membrane stability, as revealed from greatly reduced membrane damage rate (MDA) and malondialdehyde (MDA) content. Theseedlings showed the higher expression of antioxidative enzyme such as catalase (CAT) and ascorbate peroxidase (APX). The present data suggest that H2O2, a stress signal, could trigger the activation of antioxidants in seeds, which persists in the seedlings to alleviate the oxidative damage, leading to improvements in physiological attributes for the seedling growth under drought

    Alternative scheme for two-qubit conditional phase gate by adiabatic passage under dissipation

    Get PDF
    We check a recent proposal [H. Goto and K. Ichimura Phys. Rev. A 70, 012305 (2004)] for controlled phase gate through adiabatic passage under the influence of spontaneous emission and the cavity decay. We show a modification of above proposal could be used to generate the necessary conditional phase gates in the two-qubit Grover search. Conditioned on no photon leakage either from the atomic excited state or from the cavity mode during the gating period, we numerically analyze the success probability and the fidelity of the two-qubit conditional phase gate by adiabatic passage. The comparison made between our proposed gating scheme and a previous one shows that Goto and Ichimura's scheme is an alternative and feasible way in the optical cavity regime for two-qubit gates and could be generalised in principle to multi-qubit gates.Comment: to appear in J. Phys.
    corecore