69 research outputs found

    Efficient quantum key distribution scheme with pre-announcing the basis

    Full text link
    We devise a new quantum key distribution scheme that is more efficient than the BB84 protocol. By pre-announcing basis, Alice and Bob are more likely to use the same basis to prepare and measure the qubits, thus achieves a higher efficiency. The error analysis is revised and its security against any eavesdropping is proven briefly. Furthermore we show that, compared with the LCA scheme, our modification can be applied in more quantum channels

    Pressure-tunable magnetic topological phases in magnetic topological insulator MnSb4Te7

    Full text link
    Magnetic topological insulators, possessing both magnetic order and topological electronic structure, provides an excellent platform to research unusual physical properties. Here, we report a high-pressure study on the anomalous Hall effect of magnetic TI MnSb4Te7 through transports measurements combined with first-principle theoretical calculations. We discover that the ground state of MnSb4Te7 experiences a magnetic phase transition from the A-type antiferromagnetic state to ferromagnetic dominating state at 3.78 GPa, although its crystal sustains a rhombohedral phase under high pressures up to 8 GPa. The anomalous Hall conductance {\sigma}xyA keeps around 10 {\Omega}-1 cm-1, dominated by the intrinsic mechanism even after the magnetic phase transition. The results shed light on the intriguing magnetism in MnSb4Te7 and pave the way for further studies of the relationship between topology and magnetism in topological materials.Comment: 10 pages, 4 figure

    Pyrimidine catabolism is required to prevent the accumulation of 5-methyluridine in RNA

    Get PDF
    5-Methylated cytosine is a frequent modification in eukaryotic RNA and DNA influencing mRNA stability and gene expression. Here we show that free 5-methylcytidine (5mC) and 5-methyl-2′-deoxycytidine are generated from nucleic acid turnover in Arabidopsis thaliana, and elucidate how these cytidines are degraded, which is unclear in eukaryotes. First CYTIDINE DEAMINASE produces 5-methyluridine (5mU) and thymidine which are subsequently hydrolyzed by NUCLEOSIDE HYDROLASE 1 (NSH1) to thymine and ribose or deoxyribose. Interestingly, far more thymine is generated from RNA than from DNA turnover, and most 5mU is directly released from RNA without a 5mC intermediate, since 5-methylated uridine (m5U) is an abundant RNA modification (m5U/U ∼1%) in Arabidopsis. We show that m5U is introduced mainly by tRNA-SPECIFIC METHYLTRANSFERASE 2A and 2B. Genetic disruption of 5mU degradation in the NSH1 mutant causes m5U to occur in mRNA and results in reduced seedling growth, which is aggravated by external 5mU supplementation, also leading to more m5U in all RNA species. Given the similarities between pyrimidine catabolism in plants, mammals and other eukaryotes, we hypothesize that the removal of 5mU is an important function of pyrimidine degradation in many organisms, which in plants serves to protect RNA from stochastic m5U modification

    Pressure induced superconductivity in WB2 and ReB2 through modifying the B layers

    Full text link
    The recent discovery of superconductivity up to 32 K in the pressurized MoB2 reignites the interests in exploring high-Tc superconductors in transition-metal diborides. Inspired by that work, we turn our attention to the 5d transition-metal diborides. Here we systematically investigate the responses of both structural and physical properties of WB2 and ReB2 to external pressure, which possess different types of boron layers. Similar to MoB2, the pressure-induced superconductivity was also observed in WB2 above 60 GPa with a maximum Tc of 15 K at 100 GPa, while no superconductivity was detected in ReB2 in this pressure range. Interestingly, the structures at ambient pressure for both WB2 and ReB2 persist to high pressure without structural phase transitions. Theoretical calculations suggest that the ratio of flat boron layers in this class of transition-metal diborides may be crucial for the appearance of high Tc. The combined theoretical and experimental results highlight the effect of geometry of boron layers on superconductivity and shed light on the exploration of novel high-Tc superconductors in borides.Comment: 17 pages,5 figure

    Robust anomalous Hall effect in ferromagnetic metal under high pressure

    Full text link
    Recently, the giant intrinsic anomalous Hall effect (AHE) has been observed in the materials with kagome lattice. In this study, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn6Sn6 with clean Mn kagome lattice. Our in-situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn6Sn6 maintains a hexagonal phase under high pressures up to 8.51 GPa. The anomalous Hall conductivity (AHC) {\sigma}xyA remains around 150 {\Omega}-1 cm-1, dominated by the intrinsic mechanism. Combined with theoretical calculations, our results indicate that the stable AHE under pressure in LiMn6Sn6 originates from the robust electronic and magnetic structure.Comment: 11 pages 5 figure

    Fuzzy reliable tracking control for flexible air-breathing hypersonic vehicles

    Get PDF
    In this paper, we present a fuzzy reliable tracking control design method for flexible air-breathing hypersonic vehicles (FAHVs) subject to disturbances and possible sensor/actuator failures. This problem is challenging due to the strong coupling effects, variable operating conditions and possible failures in FAHVs. First, Takagi-Sugeno (T-S) fuzzy model isused to represent the longitudinal dynamics model of FAHVs. Then, by considering the disturbances and the faults, the fuzzy reliable tracking problem is proposed, and the tracking control problem is transformed into a stabilization problem. A fuzzy reliable state-feedback controller is designed to guarantee the asymptotic stability of the closed-system. By the Lyapunov approach, the existence conditions for such a controller are established in terms of linear matrix inequalities. With the designed controllers, the reference command can be tracked in spite of actuator/sensor faults. Simulation has demonstrated the proposed design scheme

    Effects of Replacing Fishmeal and Soybean Protein Concentrate with Degossypolized Cottonseed Protein in Diets on Growth Performance, Nutrient Digestibility, Intestinal Morphology, Cecum Microbiome and Fermentation of Weaned Piglets

    No full text
    The inclusion of high-quality proteins is commonly used in swine production, especially in weaned pigs. Our research investigated the effects of replacing fishmeal (FM) and soybean protein concentrate (SPC) with degossypolized cottonseed protein (DCP) on the growth performance, nutrient digestibility, intestinal morphology, cecum microbiota and fermentation in weaned pigs. A total of 90 pigs were used in a 4-week trial. Pigs were randomly assigned to three dietary treatments (initial BW 8.06 ± 0.26 kg; six pigs per pen; five pens per treatment), including a basal diet group (CON) with a 6% SPC and 6% FM; two experimental diets group (SPCr and FMr) were formulated by replacing SPC or FM with 6% DCP, respectively. There were no differences in growth performance and diarrhea rate among three treatments except for the ADFI during day 14 to day 28. Using the DCP to replace FM would weaken the jejunum morphology and decrease the nutrient digestibility of pigs during day 0 to day 14. However, replacing FM with DCP can improve the community structure of cecum microbiota, and may relieve these negative effects. In conclusion, DCP can be used as a cost-effective alternative protein supplement

    Efficient splicing of the CPE intein derived from directed evolution of the Cryptococcus neoformans PRP8 intein

    No full text
    Intein-mediated protein splicing has been widely used in protein engineering; however, the splicing efficiency and extein specificity usually limit its further application. Thus, there is a demand for more general inteins that can overcome these limitations. Here, we study the trans-splicing of CPE intein obtained from the directed evolution of Cne PRP8, which shows that its splicing rate is ~29- fold higher than that of the wild-type. When the +1 residue of C-extein is changed to cysteine, CPE also shows high splicing activity. Faster association and higher affinity may contribute to the high splicing rate compared with wild-type intein. These findings have important implications for the future engineering of inteins and provide clues for fundamental studies of protein structure and folding

    Numerical calculation method for wave loads of floating structures in shallow water

    No full text
    [Objectives] For figuring out the response of floating structures in the waves of shallow water, the main difficulty lies in the accurate solution and efficient calculation of Green's function and its partial derivative of the finite water depth.[Methods] Therefore, a method is proposed to accurately calculate the Green's function and its partial derivative by using the improved Gauss-Laguerre quadrature; then by combining this method with circulant matrix principle, one approach for dealing with symmetry problem and a simplified way of series for solving the formula are given. Finally, the numerical results of this method are compared with those of other commercial software.[Results] The analysis results show that the method proposed in this paper has high accuracy.[Conclusions] This proposed method can be used to accurately estimate motions and wave loads of the floating structures in shallow water
    • …
    corecore