243 research outputs found
Domain Conditioned Adaptation Network
Tremendous research efforts have been made to thrive deep domain adaptation
(DA) by seeking domain-invariant features. Most existing deep DA models only
focus on aligning feature representations of task-specific layers across
domains while integrating a totally shared convolutional architecture for
source and target. However, we argue that such strongly-shared convolutional
layers might be harmful for domain-specific feature learning when source and
target data distribution differs to a large extent. In this paper, we relax a
shared-convnets assumption made by previous DA methods and propose a Domain
Conditioned Adaptation Network (DCAN), which aims to excite distinct
convolutional channels with a domain conditioned channel attention mechanism.
As a result, the critical low-level domain-dependent knowledge could be
explored appropriately. As far as we know, this is the first work to explore
the domain-wise convolutional channel activation for deep DA networks.
Moreover, to effectively align high-level feature distributions across two
domains, we further deploy domain conditioned feature correction blocks after
task-specific layers, which will explicitly correct the domain discrepancy.
Extensive experiments on three cross-domain benchmarks demonstrate the proposed
approach outperforms existing methods by a large margin, especially on very
tough cross-domain learning tasks.Comment: Accepted by AAAI 202
Impingement and Mixing Dynamics of Micro-Droplets on a Solid Surface
Supported from National Natural Science Foundation of China (No.22078008) and the Fundamental Research Funds for the Central Universities (XK1802-1). Acknowledgement The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (No.22078008) and the Fundamental Research Funds for the Central Universities (XK1802-1).Peer reviewedPostprin
Mixing process of two miscible fluids in a lid-driven cavity
The authors gratefully acknowledge the financial support from the National and Key Research and Development Program of China (No.2016YFB0302801), National Natural Science Foundation of China (No.21676007) and Scientific Research and Technology Development Projects of China National Petroleum Corporation (No. 2016B-2605).Peer reviewedPostprin
Mechanisms for drawdown of floating particles in a laminar stirred tank flow
The authors gratefully acknowledge the financial support from the National Key R&D Program of China (2017YFB0306701) and from the National Natural Science Foundation of China (No.21676007).Peer reviewedPostprin
Multi-particle suspension in a laminar flow agitated by a Rushton turbine
The financial supports from the National Key R&D Program of China (2017YFB0306704) and the National Natural Science Foundation of China (No.21676007) are gratefully acknowledged.Peer reviewedPostprin
Experimental study on spontaneous imbibition characteristics of tight rocks
In the exploitation of tight oil and gas reservoirs, multi-stage hydraulic fracturing technology is mainly used and a complex system of fractures and matrix is formed after fracturing. In the process of field production, it is reported that longer shut-in time results in good oil and gas production rate. The reason of this phenomenon is considered as the spontaneous imbibition of oil and gas driven by capillary force in reservoirs. Spontaneous imbibition is an important recovery mechanism in low permeability and tight reservoirs. The pore structure of tight rocks is very complex and the pore connectivity is poor. It is of great significance to study the imbibition mechanism of tight porous rocks. Through the combination of spontaneous imbibition experiments, this work studies the influencing factors and reveals the mechanism of the gas/oil recovery from tight reservoirs. The spontaneous imbibition experiments were carried on the gas/water system and the oil/water system. The swelling clay minerals in shales will enhance the imbibition. Cores with high permeability have small recovery, which may be due to the low capillary force in tight cores. Fractures can promote the imbibition volume of tight cores.Cited as: Gao, L., Yang, Z., Shi, Y. Experimental study on spontaneous imbibition characteristics of tight rocks. Advances in Geo-Energy Research, 2018, 2(3): 292-304, doi: 10.26804/ager.2018.03.0
Droplet impingement and wetting behavior on a chemically heterogeneous surface in the Beyond-Cassie-Baxter regime
Peer reviewedPostprin
Particle image velocimetry experiments and direct numerical simulations of solids suspension in transitional stirred tank flow
The financial supports from the National Key R&D Program of China (2017YFB0306703) and the National Natural Science Foundation of China (No.21676007) are gratefully acknowledged.Peer reviewedPostprin
- …