37 research outputs found

    Convex Relaxations and Linear Approximation for Optimal Power Flow in Multiphase Radial Networks

    Get PDF
    Distribution networks are usually multiphase and radial. To facilitate power flow computation and optimization, two semidefinite programming (SDP) relaxations of the optimal power flow problem and a linear approximation of the power flow are proposed. We prove that the first SDP relaxation is exact if and only if the second one is exact. Case studies show that the second SDP relaxation is numerically exact and that the linear approximation obtains voltages within 0.0016 per unit of their true values for the IEEE 13, 34, 37, 123-bus networks and a real-world 2065-bus network.Comment: 9 pages, 2 figures, 3 tables, accepted by Power System Computational Conferenc

    Optimal Decentralized Protocols for Electric Vehicle Charging

    Get PDF
    We propose decentralized algorithms for optimally scheduling electric vehicle charging. The algorithms exploit the elasticity and controllability of electric vehicle related loads in order to fill the valleys in electric demand profile. We formulate a global optimization problem whose objective is to impose a generalized notion of valley-filling, study properties of the optimal charging profiles, and give decentralized offline and online algorithms to solve the problem. In each iteration of the proposed algorithms, electric vehicles choose their own charging profiles for the rest horizon according to the price profile broadcast by the utility, and the utility updates the price profile to guide their behavior. The offline algorithms are guaranteed to converge to optimal charging profiles irrespective of the specifications (e.g., maximum charging rate and deadline) of electric vehicles at the expense of a restrictive assumption that all electric vehicles are available for negotiation at the beginning of the planning horizon. The online algorithms relax this assumption by using a scalar prediction of future total charging demand at each time instance and yield near optimal charging profiles. The proposed algorithms need no coordination among the electric vehicles, hence their implementation requires low communication and computation capability. Simulation results are provided to support these results

    Distributional Analysis for Model Predictive Deferrable Load Control

    Get PDF
    Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. However, to this point, distributional analysis of model predictive deferrable load control has been elusive. In this paper, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance.Comment: 12 pages, technical report for CDC 201

    Optimal Power Flow in Direct Current Networks

    Get PDF
    The optimal power flow (OPF) problem determines power generations/demands that minimize a certain objective such as generation cost or power loss. It is non-convex and NP-hard in general. In this paper, we study the OPF problem in direct current (DC) networks. A second-order cone programming (SOCP) relaxation is considered for solving the OPF problem. We prove that the SOCP relaxation is exact if either 1) voltage upper bounds do not bind; or 2) voltage upper bounds are uniform and power injection lower bounds are negative. Based on 1), a modified OPF problem is proposed, whose corresponding SOCP is guaranteed to be exact. We also prove that SOCP has at most one optimal solution if it is exact. Finally, we discuss how to improve numerical stability and how to include line constraints

    Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    Full text link
    The optimal power flow (OPF) problem determines power generation/demand that minimize a certain objective such as generation cost or power loss. It is nonconvex. We prove that, for radial networks, after shrinking its feasible set slightly, the global optimum of OPF can be recovered via a second-order cone programming (SOCP) relaxation under a condition that can be checked a priori. The condition holds for the IEEE 13-, 34-, 37-, 123-bus networks and two real-world networks, and has a physical interpretation.Comment: 32 pages, 10 figures, submitted to IEEE Transaction on Automatic Control. arXiv admin note: text overlap with arXiv:1208.407

    Distributed Load Control in Multiphase Radial Networks

    Get PDF
    The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable. Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks. This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control. Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations. We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request. Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule. To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks. Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact. To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.</p

    Exact Convex Relaxation of Optimal Power Flow in Tree Networks

    Get PDF
    The optimal power flow (OPF) problem seeks to control power generation/demand to optimize certain objectives such as minimizing the generation cost or power loss in the network. It is becoming increasingly important for distribution networks, which are tree networks, due to the emergence of distributed generation and controllable loads. In this paper, we study the OPF problem in tree networks. The OPF problem is nonconvex. We prove that after a "small" modification to the OPF problem, its global optimum can be recovered via a second-order cone programming (SOCP) relaxation, under a "mild" condition that can be checked apriori. Empirical studies justify that the modification to OPF is "small" and that the "mild" condition holds for the IEEE 13-bus distribution network and two real-world networks with high penetration of distributed generation.Comment: 22 pages, 7 figure

    An Online Gradient Algorithm for Optimal Power Flow on Radial Networks

    Get PDF
    We propose an online algorithm for solving optimal power flow (OPF) problems on radial networks where the controllable devices continuously interact with the network that implicitly computes a power flow solution given a control action. Collectively the controllable devices and the network implement a gradient projection algorithm for the OPF problem in real time. The key design feature that enables this approach is that the intermediate iterates of our algorithm always satisfy power flow equations and operational constraints. This is achieved by explicitly exploiting the network to implicitly solve power flow equations for us in real time at scale. We prove that the proposed algorithm converges to the set of local optima and provide sufficient conditions under which it converges to a global optimum. We derive an upper bound on the suboptimality gap of any local optimum. This bound suggests that any local minimum is almost as good as any strictly feasible point. We explain how to greatly reduce the gradient computation in each iteration by using approximate gradient derived from linearized power flow equations. Numerical results on test networks, ranging from 42-bus to 1990-bus, show a great speedup over a second-order cone relaxation method with negligible difference in objective values

    Dynamical bandwidth adjustment of a link in a data network

    Get PDF
    An apparatus includes a first node configured to receive the data packets from a plurality of source nodes of the data network and to selectively route some of the received data packets to a link via a port of the first node. The apparatus also includes a link-input buffer that is located in the first node and is configured to store the some of the received data packets for transmission to the link via the port. The first node is configured to power off hardware for transmitting received data packets to the link in response to a fill level of the link-input buffer being below a threshold

    Distributed Load Balancing with Nonconvex Constraints: A Randomized Algorithm with Application to Electric Vehicle Charging Scheduling

    Get PDF
    With substantial potential to reduce green house gas emission and reliance on fossil fuel, electric vehicles (EVs) have lead to a booming industry, whose growth is expected to continue for the next few decades. However, EVs present themselves as large loads to the power grid. If not coordinated wisely, the charging of EVs will overload power distribution circuits and dramatically increase power supply cost. To address this challenge, significant amount of effort has been devoted in the literature to schedule the charging of EVs in a power grid friendly way. Nonetheless, the majority of the literature assumes that EVs can be charged intermittently at any power level below certain rating, while in practice, it is preferable to charge an EV consecutively at a pre-determined power to prolong the battery lifespan. This practical EV charging constraint is nonconvex and complicates scheduling. To schedule a large number of EVs with the presence of practical nonconvex charging constraints, a distributed and randomized algorithm is proposed in this paper. The algorithm assumes the availability of a coordinator which can communicate with all EVs. In each iteration of the algorithm, the coordinator receives tentative charging profiles from the EVs and computes a broadcast control signal. After receiving this broadcast control signal, each EV generates a probability distribution over its admissible charging profiles, and samples from the distribution to update its tentative charging profile. We prove that the algorithm converges almost surely to a charging profile in finite iterations. The final charging profile (that the algorithm converges to) is random, i.e., it depends on the realization. We characterize the final charging profile—a charging profile can be a realization of the final charging profile if and only if it is a Nash equilibrium of the game in which each EV seeks to minimize the inner product of its own charging profile and the aggregate electricity demand. Furthermore, we provide a uniform suboptimality upper bound, that scales O(1=n) in the number n of EVs, for all realizations of the final charging profile
    corecore