17,950 research outputs found

    Slow dynamics of a confined supercooled binary mixture II: Q space analysis

    Full text link
    We report the analysis in the wavevector space of the density correlator of a Lennard Jones binary mixture confined in a disordered matrix of soft spheres upon supercooling. In spite of the strong confining medium the behavior of the mixture is consistent with the Mode Coupling Theory predictions for bulk supercooled liquids. The relaxation times extracted from the fit of the density correlator to the stretched exponential function follow a unique power law behavior as a function of wavevector and temperature. The von Schweidler scaling properties are valid for an extended wavevector range around the peak of the structure factor. The parameters extracted in the present work are compared with the bulk values obtained in literature.Comment: 8 pages with 8 figures. RevTeX. Accepted for publication in Phys. Rev.

    A flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)

    Get PDF
    A new method, called relevant transformation of the inputs network approach (RETINA) is proposed as a tool for model building and selection. It is designed to improve some of the shortcomings of neural networks. It has the flexibility of neural network models, the concavity of the likelihood in the weights of the usual likelihood models, and the ability to identify a parsimonious set of attributes that are likely to be relevant for predicting out of sample outcomes. RETINA expands the range of models by considering transformations of the original inputs; splits the sample in three disjoint subsamples, sorts the candidate regressors by a saliency feature, chooses the models in subsample 1, uses subsample 2 for parameter estimation and subsample 3 for cross-validation. It is modular, can be used as a data exploratory tool and is computationally feasible in personal computers. In tests on simulated data, it achieves high rates of successes when the sample size or the R2 are large enough. As our experiments show, it is superior to alternative procedures such as the non negative garrote and forward and backward stepwise regression.

    X-ray Spectral and Variability Properties of Low-Mass AGN

    Get PDF
    We study the X-ray properties of a sample of 14 optically-selected low-mass AGN whose masses lie within the range 1E5 -2E6 M(solar) with XMM-Newton. Only six of these low-mass AGN have previously been studied with sufficient quality X-ray data, thus, we more than double the number of low-mass AGN observed by XMM-Newton with the addition of our sample. We analyze their X-ray spectral properties and variability and compare the results to their more massive counterparts. The presence of a soft X-ray excess is detectable in all five objects which were not background dominated at 2-3 keV. Combined with previous studies, this gives a total of 8 low-mass AGN with a soft excess. The low-mass AGN exhibit rapid, short-term variability (hundreds to thousands of seconds) as well as long-term variability (months to years). There is a well-known anti-correlation between black hole mass and variability amplitude (normalized excess variance). Comparing our sample of low-mass AGN with this relation we find that all of our sample lie below an extrapolation of the linear relation. Such a flattening of the relation at low masses (below about 1E6 M(solar)) is expected if the variability in all AGN follows the same shape power spectrum with a break frequency that is dependent on mass. Finally, we also found two objects that show significant absorption in their X-ray spectrum, indicative of type 2 objects, although they are classified as type 1 AGN based on optical spectra.Comment: 12 pages, 5 figures, 7 tables, accepted for publication in MNRA

    Mode Coupling relaxation scenario in a confined glass former

    Full text link
    Molecular dynamics simulations of a Lennard-Jones binary mixture confined in a disordered array of soft spheres are presented. The single particle dynamical behavior of the glass former is examined upon supercooling. Predictions of mode coupling theory are satisfied by the confined liquid. Estimates of the crossover temperature are obtained by power law fit to the diffusion coefficients and relaxation times of the late α\alpha region. The bb exponent of the von Schweidler law is also evaluated. Similarly to the bulk, different values of the exponent γ\gamma are extracted from the power law fit to the diffusion coefficients and relaxation times.Comment: 5 pages, 4 figures, changes in the text, accepted for publication on Europhysics Letter

    Time-frequency analysis of rhythmic masticatory muscle activity

    Full text link
    The aim of this study was to develop and validate under laboratory conditions an algorithm for a time-frequency analysis of rhythmic masticatory muscle activity (RMMA). The algorithm baseband demodulated the electromyographic (EMG) signal to provide a frequency versus time representation. Using appropriate thresholds for frequency and power parameters, it was possible to automatically assess the features of RMMA without examiner interaction. The algorithm was first tested using synthetic EMG signals and then using real EMG signals obtained from the masticatory muscles of 11 human subjects who underwent well-defined rhythmic, static, and possible confounding oral tasks. The accuracy of detection was quantified by receiver operating characteristics (ROC) curves. Sensitivity and specificity values were >/=90% and >/=96%, respectively. The areas under the ROC curves were >/=95% (standard error +/-0.1%). The proposed approach represents a promising tool to effectively investigate rhythmical contractions of the masticatory muscles. Muscle Nerve, 2009
    • …
    corecore