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ABSTRACT

A new method, called relevant transformation of the inputs network approach (RETINA)
is proposed as a tool for model building and selection. It is designed to improve some of
the shortcomings of neural networks.

It has the flexibility of neural network models, the concavity of the likelihood in the
weights of the usual likelihood models, and the ability to identify a parsimonious set of
attributes that are likely to be relevant for predicting out of sample outcomes.

RETINA expands the range of models by considering transformations of the original
inputs; splits the sample in three disjoint subsamples, sorts the candidate regressors by a
saliency feature, chooses the models in subsample 1, uses subsample 2 for parameter
estimation and subsample 3 for cross-validation. It is modular, can be used as a data
exploratory tool and is computationally feasible in personal computers.

In tests on simulated data, it achieves high rates of successes when the sample size or
the R2 are large enough. As our experiments show, it is superior to alternative procedures
such as the non negative garrote and forward and backward stepwise regression.
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1. Introduction

Model building and selection are crucial in statistical analysis and at some point in the

effort, a decision must be made as of which among several specifications (possibly

belonging to different classes of models) should be chosen to represent a relationship

between a dependent variable and other variables of interest. Among these, one may

prefer a parametric specification (either linear or nonlinear) where some interpretation of

parameter values may be retained, or else suggest the adoption of flexible functional forms

where the relationship among the variables is guided by other criteria of explanatory

power. In this respect, the search for flexibility may be guided by the inadequacy of a linear

model with Gaussian errors to represent data in a suitable way. Generalized Linear

Models (McCullogh and Nelder, 1989) and Generalized Additive Models (Hastie and

Tibshirani, 1990) for specific classes of problems and Artificial Neural Networks  (White,

1989) provide leading examples of such a strategy.

Within each class of models, the problem of selecting the specification is far from trivial.

Approaches to model selection are numerous: not only do they differ between one

another, but they present peculiarities which reveal the importance given by each to

different aspects of modelling itself.

Some methods focus on the relationship between a model and its interpretability

according to some theory, others are based on hypothesis testing between competing

models; some judge upon the trade-off between explanatory power and parsimony in the

retained specification,  others are based on the performance of a model in explaining a set

of data not used for estimation especially when the flexibility of the in-sample specification

may lead to overparameterization; and so on.  One popular approach in econometrics the

so-called general-to-specific methodology whereby from a specification with a certain

degree of complexity we would seek more parsimonious representations of the data which

retain the same information in a simpler form.  For a recent debate on this approach and

its capability to recover the traits of the DGP, see Hoover and Perez, 2000, and the

discussion contained therein, especially the somewhat skeptical view by Granger and

Timmerman. This method involves a battery of diagnostic tests on estimated coefficients

and residuals to achieve that.

No approach is perfect, especially when misspecification of a model relative to the

process which generated the data is always a possibility; and hence all approaches to

model selection have their own flaws. Hypothesis testing in the area of model choice is
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reputed as potentially dangerous (cf. Granger et al., 1995) given the implicit advantage

attributed to the model under the null hypothesis in a nested framework or the possible

ambiguity of results in a non-nested context. Moreover, one of the undesirable aspects of

such an approach is the need to resort to pairwise comparisons.

In frameworks in which a penalty function for the number of parameters weighs on the

value of the likelihood function to provide a number which can be used to select a model

(as in the Akaike’s AIC or the Schwartz’s BIC) there is always the issue of which form such

a function should take given some undesirable properties of such information criteria to

systematically choose over- or under-parameterized models in some circumstances.

Model selection based on out-of-sample performance is also prone to problems and, in

fact, after the pioneering work by Granger and Newbold in the early 70s (Granger and

Newbold, 1973), it has become standard practice only in recent years to adopt testing

procedures for predictive ability whereby some measure of performance (such as the

Mean Squared Prediction Error, but again the choice of the criterion is not neutral) is used

in a formal hypothesis testing framework (cf. Diebold and Mariano, 1995, West, 1996,

White, 2000).

In general, researchers are aware that the activity of model selection through a

specification search (led, for example, by a forecasting performance criterion) may

translate into the choice of a good model just due to luck: the pervasive investigation of the

same data either individually or collectively may distort the view on the “right” model to

work with.

In this paper we present a tool that may be useful for model building and selection: we

suggest a novel approach to investigating a data structure with the purpose of achieving a

flexible and parsimonious representation of the mean of a variable, conditional on a set of

variables deemed of interest for the phenomenon at hand.  Our approach may prove

useful to investigate phenomena where one can think of a (large) list of variables

potentially informative in describing the conditional mean (behavior) of a variable, but s/he

does not have any strong priors as of the form of the relevant function, or of the relevance

of individual variables for the data at hand . The procedure may be even more useful when

the data generating process involves a relatively small number of relatively large

parameters. Customer credit scoring and demand for telecommunication services by firms

using individual data are just two examples of such phenomena.

This approach, called the Relevant Transformation of the Inputs Network Approach

(RETINA) is based on earlier work by  White (1998) and has the flexibility of neural
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network models in that it accommodates non-linearities and interaction effects (through

non-linear transformations of the potentially useful variables in the conditioning set), the

concavity of the likelihood in the weights of the usual likelihood models (which avoids

numerical complexity in estimation), and the ability to straightforwardly identify a set of

attributes that are likely to be truly valuable for predicting performance evaluation

outcomes (which responds to a principle of parsimony). Moreover, it is computationally not

demanding and has good finite sample properties. Even when compared to the initial

suggestion by White (1998), RETINA has higher rates of success and better finite sample

properties at a slightly higher computational cost.

When selecting the relevant inputs, the approach has some elements of similarity to

the subset regression literature in statistics (Miller, 1990). To mark the differences, we will

report the results of comparisons of RETINA to some of these methods, namely, stepwise

regression – where some variables are eliminated according to the significance of their

parameters - and nonnegative Garrote – where some parameters are set to zero while

others are shrunk toward zero (Breiman, 1995).

In performing the selection, our approach relies on a cross-validation scheme which is

aimed at limiting the possibilities that a good performance is due to sheer luck. In

particular, we design a division of the observations on three homogeneous sub-samples

and a selection procedure where possible models are estimated in the first sub-sample

and their performance evaluated in the second sub-sample by means of (out-of-sample)

mean squared prediction error. After a “candidate” is selected this way, a similar procedure

is repeated, this time estimating various models derived from the “candidate” in the second

sub-sample and cross-validating them on the third sub-sample by means of an information

criterion. We are not providing a theoretical justification for the division of the overall

sample in three sub-samples or for the choice of two different measures for evaluation

purposes, except, heuristically, the evidence of a good performance of the procedure in

the various simulations we performed. While we are sure that worse choices exist, we are

uncertain about the existence of better criteria for specific types of DGP’s which would

further improve the procedure.

There are several aspects that our approach does not address: first and foremost, we

are aware of the fact that any model specification exercise is intended to be one of finding

a good approximation according to some criteria and not one of finding the “true” model.

Second, in the simulations here we treat a case in which the data generating process

(DGP) is i.i.d., although extensions to heterogeneous and/or dependent processes
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(including the important case of non stationary variables) along these lines can be

envisaged. Third, since we are not concerned about retrieving the form of the function

linking the variables in the conditioning set to the dependent variable.

This approach does not solve the problem of choosing which class of models is best

suited to represent certain data (e.g., in a time series context, linear, bilinear, ARCH,

Threshold Autoregressive, and so on) assuming that the true DGP is among them.

The structure of the paper is as follows: in section 2 we define the RETINA and we

justify the adopted steps in the procedure. In section 3 we give a brief description of the

main differences to similar existing approaches. Section 4 contains a description of the

simulation design where we have envisaged a number of situations in which the DGP may

contain some elements of noise for model selection (presence of outliers, of structural

breaks, of sparse data, etc.). We limit the presentation of the results to a few leading cases

transferring the main bulk of the detailed results to an Appendix. Concluding remarks

follow.

2. The RETINA procedure.

As mentioned in the introduction, the tool presented here, the RElevant

Transformation of the Inputs Network Approach (RETINA) shares some characteristics of

earlier work by White (1998), in that it has the flexibility of neural network models, the

computation simplicity of the usual likelihood-based methods for which the likelihood

function is concave in the weights, and the ability to straightforwardly identify a

parsimonious set of attributes that are likely to be truly valuable for predicting performance

evaluation outcomes by way of model selection criterion based on a cross-validation

scheme. The “relevant-input” network model described below is computationally efficient

so that it can be used in desktop computers and has good finite sample properties.

RETINA has higher rates of success and better finite sample properties at a slightly higher

computational cost than the original proposal by White (1998).

Let us start by considering a (large) number of variables potentially of interest in

describing the behavior of the mean of a dependent variable Y. Given the lack of

information on the form of such a relationship, in order to maintain a degree of flexibility

one may want to use a nonlinear transformation of the input variables, say Z = ζ(X). In

pursuing these transformations, we will keep in mind our goal of identifying a parsimonious

set of (transformed) attributes that are likely to be truly relevant for predicting out of sample
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outcomes for Y. Hence, we need to be careful, that the transformations we choose are not

highly correlated with one another, as highly correlated transforms will not provide a great

deal of independent predictive information.

Concavity in the parameters may be achieved by allowing the effects of the Z’s on Y

to be exerted in a linear fashion, providing a model of the form:

E(Y/X) ≈ ζ(X)’ β in the regression case or, more in general

E(Y/X) ≈ F(ζ(X)’ β) where F is a suitable link function (e.g. the logistic cdf for bynary

classification problems) . We will rule out the appearance of new parameters inside ζ

because that may result in non-concavity.

An important feature of White (1998) which we will exploit here is to avoid the

evaluation of all the 2m possible models when we have m candidate regressors in the set

of transformed variables Z, and then applying some form of model selection. Rather, in the

present formulation, the approach envisages the selection of a number (of order

proportional to m) of candidate models, inserting new explanatory variables on the basis of

relevance (for instance, ranking the candidate regressors according to their correlation in

absolute value with the dependent variable). At the same time the degree of dependency

of the new information added is controlled for, by keeping the amount of collinearity among

the regressors under a threshold parameter λ chosen by the experimenter (λ → 0 – new

regressors approach orthogonality; λ  →  1 – new regressors are highly collinear).

As with all flexible modelling, the issue then becomes one of not favoring the model which

performs the best in sample, in order to avoid overparameterization. This is achieved here

in two steps: after having estimated the models in a first sub-sample, they are cross-

validated in a second subsample, then the best model re-estimated and a check adopted

as of whether a different choice of the order in which the regressors are inserted one by

one in the model would lead to a more parsimonious representation. Thus, very important

features of the procedure are that it uses disjoint sub-samples for cross-validation and an

out-of-sample forecast ability as the criterion for model selection.

2.1 The procedure in detail

The procedure can be described as follows. Assume that for each individual observation i,

(i=1, …, n) we observe a value of the response variable Yi and we have available

candidate predictor attributes Xih, h = 1, …, k, where k is potentially a very large number.
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Then the following steps are performed:

i. From the original attributes Xij form a collection Wij, j = 1, …, m of transforms of the

original attributes. For example, include in the collection of transforms the original

Xij´s (the “level 0 transforms”), all of their squares and cross products, and all of

their inverses and cross-ratios (taking care to avoid perfect multicollinearity and

divisions by zero). Call this collection the “level 1 transforms”. If desired, a set of

“level 2 transforms” can be formed by appending the level 1 transforms to the

original level 0 transforms and then taking level 1 transforms again. The process

can be continued to any desired level, but to keep things simple, we further discuss

only the level 1 transforms. For simplicity and concreteness, we have discussed

using transforms of the form  Xih 
α Xij

β,  α, β =  -1, 0, 1, but there are many other

possibilities that could be used instead.

These transforms Wij  fulfill our requirements of providing a rich set of univariate

predictors that embody not only nonlinearities but also interactions. To extract a

relatively parsimonious subset that may provide a useful basis for predicting Yi , we

proceed as follows:

ii. Divide the sample in three disjoint homogenous subsamples.

iii. In subsample 1, compute a relevance measure of the relationship between Yi and

Wij, for example the sample correlation ,ˆ
jρ    j = 1, …, m.

iv. Rank the predictors in order of (the absolute value of) the saliency measure, say,

| jρ̂ | of subsample 1, and denote the ranked Wij‘s as Wi(j), j = 1, …, m, where Wi(1)

has the highest (absolute) saliency with Yi and Wi(m)  the lowest.

v. Create a candidate subset of predictors. First, include Wi(1) in the candidate subset,

then proceed through the ranked list of Wi(j), including in the predictor attribute set

any Wi(j) for which the R2 of the regression of that Wi(j)  on the current set of included

predictor attributes is below λ, where λ is a prespecified threshold value, 0 � λ � 1,

and excluding Wi(j) otherwise. Denote the resulting set of transforms ζλ(Xi). The

smaller the correlation the candidate predictors have with each other, the better,

other things being equal. By making the selection depend on λ, we control this

correlation. By repeating our candidate variable selection process for a grid of

values for λ, say λ1, ..., λν, we obtain corresponding candidate transformations  ζl =

ζλl, l = 1, …, ν.  We can then select a best choice for λ from the collection {λ1, ..., λν}



8

in a manner analogous to the way in which a best choice for the number of hidden

units q is selected for the single layer feedforward network model.  Hence, for each

ζl(Xi), we estimate  the model in subsample 1 and we compute an out of sample

prediction criterion (e.g.: the cross-validated  mean square prediction error) in

subsample 2.

vi. Choose the candidate model (and λ) that optimizes the criterion in subsample 2.

vii. Estimate the parameters of the candidate model in subsample 2. By estimating in

subsample 2 we get essentially unbiased estimates of the parameters.

viii. Use the estimates from subsample 2 to compute a measure of the out of sample

forecast ability in subsample 3. The recommended model is the submodel with the

best out of sample forecast ability (e.g. lowest mean square prediction error) in

subsample 3.

As a matter of fact, under point viii. above, we use a somewhat more elaborate

method for arriving at the final set of predictors that takes advantage of the fact that the

elements of each ζl  have a natural ordering in terms of their univariate relevance with the

target variable in subsample 1. Because of this ordering, one can proceed in a step-wise

fashion for a given value of λl: one estimates the submodel in subsample 2 including only

the first element of ζl, then including the first two elements of ζl and so on.

For each submodel estimated, one computes the forecast criterion in subsample 3

and chooses the one with the best forecast criterion (e.g.: AIC). This criterion is then

compared across different values of λ to select λ*. This may permit the selection of a more

parsimonious model than one would get by ignoring the natural ordering in the elements of

each ζl.

In practice we repeat point viii. resorting the elements of ζl  by their univariate

saliency with Y in subsample 2. This may allow the consideration of a wider range of

candidate models.

Points iii. through ix. above can be repeated changing the order of the subsamples.

At this point, we may have more than one candidate model. The recommended model

(and optimal λ) would be the one that has the best performance in an appropriately

defined sense when estimated in the whole sample.

The data generating process may not be within the class of models considered by

the researcher. However s/he may use a parametric model of some aspect of the
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phenomenon that is the “preferred model”, a useful approximation for a particular purpose,

e.g.: estimation of a conditional mean, hypothesis testing or out of sample forecasting.

The “preferred model”, in general, may be different depending on its intended use

and the data available. Economists some times use different models of consumption

depending on whether they need it for estimation of a given parameter, choosing among

competing theories or performing out of sample forecasts. The type of data available also

influences the choice of model, e.g.: cross section, time series or panel data. The level of

aggregation is also relevant for the choice of model: individual, family, city, region or

country levels are some examples.

RETINA´s recommended model should be taken as a suggestion for a useful

approximation to some unknown relationship. The researcher needs to assess its

coherence and the rationale for the suggested transformations. S/he can add variables,

delete others or introduce restrictions based on prior knowledge, theoretical or empirical

considerations.

The heuristic justification for using three disjoint subsamples is as follows. We want

disjoint subsamples so that the information and the statistics we compute are independent

across samples.  We use the first subsample for model selection, i.e.: choosing which

transformations look promising in terms of the saliency feature in subsample 1. Then we

estimate the models in subsample 1 and cross validate them in subsample 2. The

parameters and standard deviations estimated in this fashion are  biased away from zero

as shown by Miller (1990). Therefore we need to estimate the parameters of this model in

an essentially unbiased way and we do that by estimating them using the second

subsample.  Once we have estimated the parameters appropriately, we proceed to check

the out of sample performance of the model by calculating a measure such as the MSEP

using  fresh data; in the third subsample 1.  This description suggests that using two

subsamples is not enough: we do not have fresh data either for the estimation or for the

cross validation. Using more than three is unnecessary, since we do not need additional

data sets after the third subsample.

                                                
1 Shao (1993) considers the selection of a model with the best predictive ability. He

uses a leave-nv-out cross validation, which is consistent when nv, the number of

observations reserved for validation satisfies nv /n � 1.
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3. Related approaches.

Here we comment on the relationships between RETINA and other model building and

selection tools such as neural networks, White (1988), stepwise regression, Miller(1990),

the London School of Economics methodology, Hoover and Pérez (2000) and non-

negative garrote, Breiman (1995). We also comment on the relationship with other types of

models such as generalised linear models and generalised additive models, Hastie and

Tibshirani (1990). We do not comment on other model building methods such as ACE,

Breiman and Friedman (1985) and CART, Breiman et al. (1984) and Chipman et al.

(1998), because they are no closely related to RETINA.

RETINA is designed to overcome some of the drawbacks of neural networks, White

(1988). To that end, it uses ingredients that were previously available in the literature. We

point out some similarities and differences of the RETINA procedure with previous

procedures.

 Our procedure has some common features with neural networks models, such as the

flexibility, which is afforded here using nonlinear transformations of the inputs while

maintaining linearity in the parameters within the link function. On the other hand,  neural

networks models achieve flexibility by allowing nonlinearities in the parameters.  With

respect to the objective function, RETINA uses an out of sample predictive criterion, while

neural nets use an in-sample goodness of fit criterion.

RETINA also has features in common with stepwise regression, Miller (1990), e.g.:

the ability to search for a subset of relevant regressors, in a non-exahustive fashion. In

particular, RETINA performs a selective search guided by a saliency feature of the

regressors. A difference between the two procedures is that RETINA perfoms a search

based on an out of sample criterion, while stepwise regression uses an in sample model

selection criterion.

The London School of Economics (LSE), Hoover and Pérez (2000), from general-to-

specific approach to model building and selection starts with a reasonably general

specification of a model and through parameters and residuals tests selects a

parsimonious model that adequately represents the relationship under consideration,

RETINA can be considered a from-general-to-more-general-to-specific methodology. First,

it expands the range of possible regressors by including the transformations of the inputs,

then it considers models that include both the inputs and their transforms, then it narrows

the search to the most promising models using a selective search criterion (saliency).  One
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important difference is that the LSE methodology uses in sample tests while RETINA uses

an out of sample criterion.

An alternative model building and selection approach is non negative garrote,

Breiman (1995). It is a method for doing subset regression. It starts with a linear

regression including all the possible explanatory variables and selects subsets by zeroing

and/or shrinking coefficient estimates.  It works well in experimental data compared to

subset selection when there is a small number of large coefficients. Non negative garrote

uses a cross validation as the model selection criterion and does not consider explicitly

the transformations of the original inputs.

Generalised linear models and generalised additive models, Hastie and Tibshirani,

(1990), are models linear in the parameters. Like our procedure, they can incorporate

nonlinear link functions.  Since RETINA considers in addition models that involve

interactions of the original inputs, the models considered by RETINA are broader than

generalised linear and generalised additive models.

As we have shown, several ingredients of RETINA were already present in the

literature.  Some of them have well established roots, like the generalised linear models,

the out of sample forecasting criteria and the selective search.  The use of the �

parameter for controlling collinearity, this particular saliency feature and the division in

three subsamples may be less widespread.  All of them are simple and have some intuitive

appeal.

4. Simulations.

Because analytic results are difficult to come by in this area, the major proving

ground is testing on simulated data. We explore the finite sample properties of RETINA

and compare it with backward stepwise regression (Miller, 1990) and non-negative garrote

(Breiman, 1995).

We compare it with backward stepwise regression because it is a widely used

model selection procedure. The reasons for comparing it with non negative garrote are

that it is focused on the forecast ability of the model, is more stable than subset regression

and is superior both to subset selection and ridge regression when the number of relevant

regressors is small (like the present situation). However, non negative garrote is

computationally demanding, compared to our procedure.

We investigate how well does RETINA select the right model in the following sense:
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1.  With what frequency does RETINA choose a model that coincides with the data

generation process (DGP) when the DGP is within the candidate models considered?

(including irrelevant X’s). We consider both cases, when the DGP is linear in the X´s and

when the DGP is nonlinear in the X´s.

2.   How does the procedure perform when the DGP includes discrete explanatory

variables?

3.   How does RETINA perform when the DGP includes X’s with sparse data?

4. How sensitive is it to the presence of outliers in the DGP?

5. How sensitive is it to the presence of a structural break in the DGP?

6. How fine a grid for λ, (parameter that controls for collinearity) do we need?

4.1. Design of the experiments.

The data were generated using the data generation process (DGP):

DGP1: yi = α0  + α1  x1i + α2  x2i + EW u i, i =1, …, n,

where α0 = α1 = α2 = 1, x1i and x2i are jointly normal with correlations ρ = 0.5 or 0.9. The

error term ui is iid N(0,1), EW is a parameter that controls the standard deviation of the

error, to obtain average values of the R2 for each experiment around  0.75, 0.50 and 0.25

respectively. The sample sizes are n=100, 200 and 1000. Other sample sizes were used

with similar results and are not reported here. The number of replications for each run of

each experiment was 1000.

DGP2: yi = α0  + α1  x1i / x2i  + EW ui , where the second term depends on the ratio x1i / x2i

and everything else is as in DGP1 except that ρ= 0.5. Analogously,

DGP3: yi = α0  + α1  x1i  x2i  + EW ui ,

For the case of a discrete explanatory variable we use the same setup and

parameter values as DGP1 except that now x1i’ is a dummy variable that takes the value 1

with probability 0.5 and 0 otherwise:

DGP4: yi = α0  + α1  x1i’ + α2  x2i + EW u i .

For the case of sparse data we use the same setup as in DGP1, except that x1i’’ is iid

N(0,1) with probability 0.2 and zero otherwise.

DGP5: yi= α0  + α1 x1i’’ + α2  x2i + EW ui .
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To check for the sensitivity to outliers we go back to DGP1 and use u i’ which is

the same as ui except that when the absolute value of u i is larger than 1.96 standard

deviations, it is multiplied by 5 (and alternatively 2.5 or 10). That is, we expect 5% outliers.

DGP6: yi = α0  + α1 x1i + α2 x2i + EW ui’.

We explore the ability of RETINA to recover the right regressors when a structural

break in the parameters has occurred. The DGP is linear, as in DGP1 but now

DGP7: yi = α0  + α*1 x1i + α*2 x2i + EW ui,

where α*1=α*2=1 for the first half of the sample and α*1= 0.5, α*2 = 2 for the second half.

4.2. Results.

For the simulations we used a program written in GAUSS. For Experiment 1, the

data were generated using DGP1 with ρ = 0.5. RETINA was used with level one

transforms of x1i , x2i  and x3i, and the constant, where x3i is an irrelevant regressor which is

also jointly normal with the same distribution and correlations as above. The parameter λ

varies from 0 to1 by increments of 0.1. The maximum number of candidate regressors

(Wij’s) is 25, of which only three are relevant. The total number of possible candidate

models to consider is 224, since the constant is always in the candidate model. RETINA

evaluates around 2x24 different candidate models.

We count a success when RETINA chooses a candidate model which coincides

with the DGP. The percentages of successes and two standard deviations (represented by

the vertical bars at each point) are displayed in Figure 1a. This suggests that if we have

either a large R2 or sample size, the percentage of successes is close to 100%.
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Figure 1a. Dgp1, linear case, ρρ=0.5 
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Table 1. Percentages of successes of RETINA for different DGP´S and R2 =0.5

Sample size

DGP n = 100 n = 200 n = 1000

DGP1 linear 73 94 99

DGP2 ratio 73 82 95

DGP3 product 96 99 99

DGP4 dummy 43 73 96

DGP5 sparse data - 33 93

DGP6 outliers 65 93 99

DGP7 struct. break 39 67 99

Table 2. Percentages of successes of RETINA versus other procedures for

DGP1 and R2=0.5

R2 = 0,5 Sample size

DGP1 n = 100 n = 200 n = 1000

RETINA 73 94 99

Non-negative garrote 5 11 54

Stepwise regression 9 8 9

Simpler RETINA 60 68 76

Table 1 present an overview of the results of the use of RETINA with different

DGP´S. For simplicity, we round up the percentages to the closest integer and show only

the leading case of R2 = 0.5. See more details in the Appendix. RETINA works well when

the DGP includes transformations of the inputs, discrete explanatory variables, sparse

data, outliers or structural breaks.  These results suggest that when the DGP is among the

models considered by RETINA, there is a high probability, in some cases close to one,

that it is recovered. The probability of success increases with the sample size. Graph 1

and the results in the Appendix also suggest that this probability increases with R2.
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These experiments suggest that RETINA meets a necessary condition for its

usefulness as a model selection strategy, since, it recovers the DGP with high frequency

when the DGP is within the candidate models.

Table 2 above shows the performance of RETINA vis a vis its competitors, such as non

negative garrote, backward stepwise regression and a simpler version of RETINA: without

resorting the three subsamples, and without degrees of freeedom corrections.  The

simulation results suggest that RETINA outperforms its rivals when the objective is to

recover the DGP. This is another necessary condition for the usefulness of the procedure.

See more details in the Appendix.

The grid for λ, the parameter that controls collinearity, need not be too fine. In the

experiments, using λ between 0 and 1 by increments of 0.1 is fine enough.  This limits the

computational costs of the procedure.

4.3. Comments.

RETINA may be a useful tool for model building and selection. It can be used

as a data exploratory tool to suggest possible models and transformations of the inputs.

RETINA is a modular procedure. One can substitute some ingredients, e.g.: use

different levels of transformations, logarithms, a different saliency feature or cross

validation criteria, and the procedure works in a modified fashion.

RETINA can consider a maximum of 2m–1 models, where m is the total number of

candidate regressors, that is, the columns of W when level one transforms are applied. For

instance, when we have a constant and two varying inputs: X={1, x1, x2} and W={1, x1, x2,

x1x2, x1
2, x2

2, x1
-1, x2

-1, x1 x2
-1, x1

-1x2, x1
-2, x2

-2, x1
-1x2

-1}. The potential number of models is

213 –1= 8191. If we always include a constant, the potential number of models is 212 =

4096. For a constant and three varying inputs the potential number of models, if they

always include a constant, is 224= 16,777,216 models. A major advantage of a selective

search (guided by a saliency feature) is to reduce the number of models actually

evaluated.
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RETINA allows for likelihood-type estimation techniques other than regression, and

for the use of dependent observations. It may be more appropriate for cases in which there

are a few large nonzero parameters, while other methods such as ridge regression may

be more appropriate when there are many nonzero, but possibly small, parameters

(Breiman, 1995).

5. Concluding remarks.

A new method, based on RIPNET of White (1998), called relevant transformation of the

inputs network approach, RETINA, is proposed for model building and selection. It is

designed to have the flexibility of neural network models, the concavity of the likelihood in

the weights of the usual likelihood models and the ability to identify a parsimonious set of

attributes that are likely to be relevant for predicting performance evaluation outcomes.

The procedures splits the sample in three disjoint subsamples and uses subsample 1

essentially for model selection, subsample 2 for cross validation and parameter estimation

and subsample 3 for cross validation.

To assess the finite sample performance of RETINA we performed simulations in

which we record the ability of the procedure to recover the DGP. In general, the results are

encouraging, except when the sample size or the R2 are small. RETINA, seems to perform

well with DGP’s linear and nonlinear in the inputs, dummies, sparse data, outliers and

structural breaks.

The procedure is computationally feasible in personal computers and the rates of

success are better than some competing criteria, such as non negative garrote and

backward stepwise regression. RETINA can be used as an exploratory tool, is modular

and flexible and the models can be easily modified by the user. This suggests that

RETINA can be useful for applied researchers. The present version of RETINA is

applicable to independent identically distributed observations. It may be worth considering

the applicability of RETINA to other types of data, such as time series and panel data.
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Appendix

We present the outcomes of the experiments with more detail.

1. DGP1. For comparison, with RETINA, we present in Figure 1b the results of Experiment
1b, with the same DGP and parameter values, but using Breiman’s (1995) non-negative
garrote instead of RETINA. We use tenfold cross validation, make available to non
negative garrote all the Wij’s and set to zero the coefficients whose estimated absolute
values are below 0.01.

The rates of successes follow the same patterns as those of Figure 1a, increasing
with the sample size and the R2, however, they are uniformly lower than those of RETINA.
The execution time of non-negative garrote is more than two hundred times that of
RETINA, due to the nonlinear optimizations and the tenfold cross-validation used by this
method. That is why the numbers of replications used for non-negative garrote are smaller.
We have also limited the maximum value of s (the garrote parameter) to 6 or 4 for faster
convergence and execution.  On these grounds, RETINA is superior to non-negative
garrote as model selection criterion.

Figure 1b. Dgp1, garrote, linear case, ρρ=0.5, 100
repls.
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In Experiment 2, we analyze the same DGP1 (including the same values of EW) as
in Experiment 1. The main difference is that here we allow for more collinearity among the
candidate regressors, ρ= 0.9 and therefore, the R2 are higher than in Experiment 1. The
results are summarized in Figure 2, which represents the % of successes of RETINA for
recovering the regressors of the DGP. The vertical bars are two standard deviations. and
suggest that collinearity may be damaging for model selection. The results seem good for
high R2 and large sample sizes, but are generally poor for samples of sizes 100 and 200.
This suggests that collinearity may be damaging for model selection using this version of
RETINA.

In Experiment 3 we analyze the performance of RETINA when the data are
generated in a nonlinear fashion by DGP2. The results are summarized in Figure 3. The
rates of successes are again reasonably high if the R2 or the sample size are large
enough.

Figure 2. Dgp1, linear case, ρρ= 0.9
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In the next Experiment we use the multiplicative DGP3. The results are
summarized in Figure 4. In this case RETINA works well in all cases except for n=100 and

R2=0.25.

.  In the next Experiment, with DGP4, one of the regressors is a dummy variable that
randomly takes the value 1 or 0 with probability 0.5. The results are summarized in Figure
5. Here, again, a large sample or a high R2 are required for the procedure to yield a
reasonable percentage of successes.

Figure 4. Dgp3, product x1*x2.
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 Figure 6 summarizes the results of applying RETINA to data generated by
DGP5, that is, a linear model in which one of the regressors takes the value zero with
probability 0.8 and is extracted from an iid N(0,1) otherwise. This is the case of sparse
data. Here, no samples of size 100 were drawn because, frequently, after splitting the
sample in three, all the observations for one variable in one of the subsamples were zero.
If the sample size is large enough and the R2 not too low the procedure works reasonably
well.

Figure 7a summarizes the results of the experiments that use dpg6 to generate the
data. Here, the values of the error term greater in absolute value than 1.96 are multiplied
times 5. In this case, we do not expect RETINA to recover the dpg; instead we consider a
success when it correctly identifies the regressors of the DGP. Again, when the sample
size is large enough or the R2 is high enough, the procedure can recover the regressors of
the DGP with high frequency. Otherwise, it may fail to do so.

Figure 6. Dgp5, linear dgp, sparse data.
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Next, we wanted to analyze how the presence of outliers affects the ability of
RETINA to select the correct model. This is presented in Figure 7b. For that we used the
n=100, R2=0.50 case and use different values of the parameter that multiplies each of the
outliers. For the last case of X10, each realization of the error larger in absolute value than
1.96 is multiplied times 10. The baseline case of no outliers is X1, for which the values of
the error are not altered. The results suggest that RETINA may be quite robust to the
presence of outliers. However, the estimates of the coefficients and their precision are
adversely affected.

Figure 8 summarizes the results of RETINA when there is a structural break in the
middle of the sample. In that case, it still achieves high rates of success for recovering the
right regressors, except in the cases with low R2 or relatively small samples. However it
does not recover the DGP. Subsequent tests for structural change or residual analysis
may detect the existence and location of the structural breaks.

Figure 7b. Dgp4, linear, 5% outliers, varying their size
(n=100).
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In our experiments, a reasonable grid for the parameter λ is between 0 and 1 by
increments of 0.1. A finer grid increases marginally the success rate while the execution
time increases substantially. On the other hand, a less fine grid decreases somewhat the
success rate while saving little computer time. This is suggested by Figure 9, in which we
have repeated one run of Experiment 1, with DGP1, for R2=0.50 and n=100 varying the
increments of λ between 1 (only zero or one are considered), 0.1 and 0.01.   In the Figure
we show the rates of success and the minutes of execution for each of these values for the
λ grid.

Figure 8. Dgp7, linear, structural break.
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2. RETINA vs. RIPNET and simpler versions of RETINA.

In this section we compare RETINA with some simpler versions of RETINA and with
RIPNET.  In Table 1’ we compare RETINA and a simpler version of RETINA, in which we
do not perform the resorting of the three subsamples and therefore do not repeat the
model selection procedure with the subsamples resorted as 321.  Lines in dashes

correspond to RETINA without 321 resorting, while solid lines correspond to RETINA.The

percentages of successes are generally better for RETINA, suggesting that the 321

resorting increases the ability to select the DGP especially when R2 and n are not large.

2.1. In Table 1’’ we present the comparison of RETINA with a simpler version of RETINA
which does not resort the subsamples as 321, and that does not use a degrees of freedom

correction to compare the performance of the models that use different number of
parameters.

Table 1', dgp1, linear case ρρ=0.5 RETINA w/o 321

n=100 n=200 n=1000
R

2
=0.75 97.7 98.3 99.1

st dev 0.47 0.41 0.3
2 st dev 0.94 0.82 0.6
0.75 no321 93.2 98.6 99.5
R

2
=0.50 72.9 93.9 99.1

st dev 1.41 0.76 0.3
2 st dev 2.82 1.52 0.6
0.5 no321 58.9 83.8 99.6
R

2
=0.25 22.8 42.8 98.6

st dev 1.33 1.56 0.37
2 st dev 2.66 3.12 0.74
0.25 no321 16.8 34.9 96.2

Figure 1'. Dgp1, linear ρρ=0.5, RETINA w/o 321
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The elimination of the correction for degrees of freedom seems to hurt the
performance of the procedure in most cases, especially when the R2 is high or the sample
size is large. When the sample size is large, the rates of success stabilize around 76% and
do not approach 100%, as in RETINA.

However, when the R2 is low, the rate of success of the procedure without degrees
of freedom correction is larger than the one of RETINA. This suggests that in this case, the
degrees of freedom correction may lead to underparameterization.

Table 1'', dgp1, linear case ρρ=0.5 RETINA w/o 321 and w/o df

n=100 n=200 n=1000
R2=0.75 97.7 98.3 99.1
st dev 0.47 0.41 0.3
2 st dev 0.94 0.82 0.6
.75,no321, df. 73.7 74.6 75.2
R

2
=0.50 72.9 93.9 99.1

st dev 1.41 0.76 0.3
2 st dev 2.82 1.52 0.6
.5,no321, df. 60.2 67.5 75.9
R

2
=0.25 22.8 42.8 98.6

st dev 1.33 1.56 0.37
2 st dev 2.66 3.12 0.74
.25,no321, df. 37 48.1 76.8

Fig 1'' Dgp1, linear ρρ=0.5, RETINA w/o 321, w/o df
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2.2. In Table 1’’’ we present the first comparison of RETINA and RIPNET.

 In this case, RETINA is better than RIPNET except for R2=.25 and n=100. The rates of
success of RIPNET are low, do not approach 100 when n increases and for R2=.75 they
decrease with n. The average number of excess regressors for RIPNET is between 2 and
3, which means that the model selected by RIPNET has on average around twice as many
variables as the DGP.  This shows no tendency to decrease with n or R2.

Table 1''', dgp1, linear ρρ=0.5 RETINA  and RIPNET

n=100 n=200 n=1000
R2=0.75 97.7 98.3 99.1
st dev 0.47 0.41 0.3
2 st dev 0.94 0.82 0.6
.75, RIPNET 43.1 40.6 39.3
R

2
=0.50 72.9 93.9 99.1

st dev 1.41 0.76 0.3
2 st dev 2.82 1.52 0.6
.5, RIPNET 41.9 43.8 43
R

2
=0.25 22.8 42.8 98.6

st dev 1.33 1.56 0.37
2 st dev 2.66 3.12 0.74
.25, RIPNET 37.2 42.4 47.3

Average number of excess regressors in overparameterized models by RIPNET

in Table 1'''. Dgp1, ρρ=0.5.

n=100 n=200 n=1000

R
2
=0.75 2.92 2.77 2.77

R
2
=0.50 2.93 2.64 2.67

R2=0.25 3.04 2.71 2.61

Fig 1''' Dgp1, linear ρρ=0.5, RIPNET
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2.3. RETINA vs. RIPNET, linear case and ρ=0.9.

In this experiment the percentages of successes of RIPNET are often lower than
those of RETINA and do not increase towards 100 with n. However, several are higher
than RETINA, e.g. those for R2=0.25 and 0.50 and n=100 and 200. This suggests the use
of a criterion that employs a degrees of freedom correction less drastic than the one used
by RETINA.

Table 2', dgp1, linear case ρρ=0.9 RIPNET

n=100 n=200 n=1000
R

2
=0.75 48,9 88.1 99.5

st dev 1.58 1.02 0.22
2 st dev 3.16 2.04 0.44
.75. RIPNET 38.6 41.9 48.5
R

2
=0.50 2.9 17.1 98.4

st dev 0.53 1.19 0.4
2 st dev 1.06 2.38 0.8
.5. RIPNET 27.8 33.4 49
R

2
=0.25 0.2 0.3 61.6

st dev 0.14 0.17 1.54
2 st dev 0.28 0.34 3.08
.25. RIPNET 18.4 23.2 45.2

Average number of excess regressors in overparameterized models by RIPNET
in table 2'. Dgp1, ρρ=0.9.

n=100 n=200 n=1000
R2=0.75 2.92 3.03 3.19
R

2
=0.50 1.82 2.96 2.98

R
2
=0.25 2.14 3.14 2.73

Fig 2' Dgp1, linear  ρρ=0.9,  RIPNET
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2.4. RETINA vs. RIPNET when the DGP includes the product x1*x2.   In this

experiment RIPNET is uniformly worse than RETINA. The percentages of successes of

RIPNET are low and remain low for large n. The rates of successes do not increase and

Table 4'. Dgp3, product x1*x2, RIPNET

n=100 n=200 n=1000
R2=0.75 98.6 99.1 99.2

0.37 0.3 0.28
0.74 0.6 0.56

R2=0.75 RIPNET 21.5 16.9 18.4
R

2
=0.50 96.2 99.1 99.4

0.6 0.3 0.24
1.2 0.6 0.48

R
2
=0.50 RIPNET 27.3 21.6 19.6

R2=0.25 75.9 94.2 99.5
1.35 0.74 0.22
2.7 1.48 0.44

R
2
=0.25 RIPNET 28.6 28.6 21.7

Average #  of excess regressors in overparameterized models by RIPNET

in Table 4'. Dgp3,  x1*x2,

n=100 n=200 n=1000
R2=0.75 2.65 2.73 2.89
R2=0.50 2.66 2.67 2.88
R

2
=0.25 2.9 2.58 2.87

Figure 4'. Dgp3, product x1*x2, RIPNET
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often decrease with n. RIPNET overparameterizes substantially. The DGP has 2 variables

and the average number of variables in the models selected by RIPNET is between 4.5

and 4.9.

2.5.   RETINA vs. RIPNET with outliers.

In this experiment RIPNET is uniformly worse than RETINA, except for the case of

R2=.25 and n=100. The percentages of successes of RIPNET are low and remain low for

large n.  The rates of successes do not increase with n, and often decrease with n.  In

Table 7'. Dgp6, linear, 5% outliers in u, RETINA and RIPNET.

n=100 n=200 n=1000
R

2
=0.75 95.4 98.7 98.9

0.66 0.36 0.33
1.32 0.72 0.66

R
2
=0.75 RIPNET 46.7 42.3 39.8

R
2
=0.50 64.9 93.2 98.9

1.51 0.8 0.33
0.66 0.36 0.33

R
2
=0.50 RIPNET 44.7 45.9 42.2

R2=0.25 19.5 47.5 98.6
1.25 1.58 0.37
0.66 0.36 0.33

R2=0.25 RIPNET 29.7 43.4 21.7

Average number of excess regressors in overparameterized models by RIPNET
in table 7'. Dgp4. 5% outliers.

n=100 n=200 n=1000
R2=0.75 2.93 3.14 3.21
R

2
=0.50 3.51 2.94 3.03

R
2
=0.25 3.68 3.05 2.87

Figure 7'. Dgp4. linear with 5% outliers in u. RETINA and
RIPNET.

95.4 98.7

44.7 45.9 42.2

21.7

98.9

64.9

98.9

93.2

19.5

98.6

47.5
42.3 39.8

46.7

43.4
29.7

0

10

20

30

40

50
60

70

80

90

100

n=100 n=200 n=1000

sample size

%
 s

u
cc

es
se

s

R2=0.75

R2=0.50
R2=0.25

R2=0.75 RIPNET

R2=0.50 RIPNET
R2=0.25 RIPNET



32

summary, RETINA is generally superior to RIPNET, which has a strong tendency to

overparameterize.

3. RETINA vs. stepwise regression.  In this section we compare the performance of

RETINA with stepwise regression. Stepwise regression is a popular model selection

technique, implemented in some commonly used software packages.  We follow Miller

(1990, p. 48). Stepwise regression is often used to mean an algorithm proposed by

Efroymson (1960), which is a variation on forward selection. After each variable (other

than the first) is added to the set of selected variables, a test is made to see if any of the

previously selected variables can be deleted without appreciably increasing the residual

sum of squares. Efroymson’s algorithm incorporates criteria for the addition and deletion of

variables as follows.

a. Addition

Let RSSp denote the residual sum of squares with p variables and a constant in the model.

Suppose the smallest RSS which can be obtained by adding another variable to the

present set is RSSp+1.  The ratio

)2/(1
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+

pnRSS

RSSRSS
R
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pp

is calculated and compared with and ‘F-to-enter’ value, say Fe. If R is greater than Fe the

variable is added to the selected set.

b. Deletion

With p variables and a constant in the selected subset, let RSSp-1 be the smallest RSS

which can be obtained after deleting any variable from the previously selected variables.

The ratio
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is calculated and compared with an ‘F-to-delete (or drop)’ value, say Fd.  If R is less than
Fd, the variable is deleted from the selected set.

The optimum F-to-enter for minimizing the mean square error of prediction in the
case of random and correlated regressors, Fe  ≤ 2n/n-p, or a little less than 2 if n»p (Miller,

p. 183). And the F-to-delete statistic has a value not greater than 1 (Miller, p. 207).

3.1 Linear case with ρ=0.5.

First we compare the performance of RETINA with stepwise regression in the same setting

as Experiment 1 using DGP1 with correlations between regressors ρ=0.5. The data are the

same both for RETINA and stepwise regression. All the transformations of the original

regressors (W’s) of RETINA are made available to stepwise.

Table 1S and Figure 1S (for stepwise) summarize the percentages of successes for

RETINA and stepwise regression. The solid lines join the points corresponding to RETINA

and the broken lines link those of stepwise. The percentages of success of RETINA are

considerably higher than those of stepwise regression across sample sizes and

coefficients of determination. Stepwise regression overparameterizes around 90% of the

time, choosing models that on average have around 2.7 more parameters than the original

3 of the DGP.

Table 1S, Dgp1, ρρ=0.5 RETINA vs. stepwise

n=100 n=200 n=1000
R2=0.75 RETINA 97.7 98.3 99.1
st dev 0.47 0.41 0.3
2 st dev 0.94 0.82 0.6
R2=.75 step 9 8.2 8.7
R2=0.50 RETINA 72.9 93.9 99.1
st dev 1.41 0.76 0.3
2 st dev 2.82 1.52 0.6
R2=.50, step 9 8.2 8.7
R2=0.25 RETINA 22.8 42.8 98.6
st dev 1.33 1.56 0.37
2 st dev 2.66 3.12 0.74
R2=.25, step 8.5 8.2 8.7
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3.2 Linear case with ρρ =0.9.

In this case we use DGP1 as before, but generate the x’s with ρ=0.9. The results

are summarized in Table 2S and Figure 2S. The percentages of success are generally

higher for RETINA than for stepwise regression except for the cases of low R2 and

samples of 100 or 200. In general, there is a strong tendency of stepwise towards

overparameterization, which occurs between 24 and 85% of the time, with an average

number of excess regressors in overparameterized models between 5.51 and 2.43.

Table 2S, Dgp1, ρρ=0.9 RETINA vs. stepwise

n=100 n=200 n=1000
R

2
=0.75 48.9 88.1 99.5

st dev 1.58 1.02 0.22
2 st dev 3.16 2.04 0.44
R

2
=.75, step 14.9 13.7 14.2

R
2
=0.50 2.9 17.1 98.4

st dev 0.53 1.19 0.4
2 st dev 1.06 2.38 0.8
R

2
=.50, step 10.5 12.5 14.2

R
2
=0.25 0.2 0.3 61.6

st dev 0.14 0.17 1.54
2 st dev 0.28 0.34 3.08
R

2
=.25, step 4 6.1 14.2

Average number of excess regressors in overparameterized models by
stepwise in Table 1S. Dgp1, ρρ=0.5 and % overparameterizations.

n=100 n=200 n=1000
R

2
=0.75 2.62 2.69 2.67

91.00% 91.80% 91.30%
R

2
=0.50 2.63 2.69 2.67

90.70% 91.80% 91.30%
R

2
=0.25 2.78 2.69 2.67

83.50% 91.40% 91.30%

Fig 1S Dgp1, ρρ=0.5, RETINA vs. stepwise
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3.3 Nonlinear DGP3 with x1*x2.

In this experiment we compare the performance of RETINA and stepwise regression as

model selection criteria. The data are generated by DGP3, that is a constant and the

product of x1 times x2. The results are summarized in Table 4S and Figure 4S. The rates of

success of stepwise regression are around 6.5 % while those of RETINA are always

above 75%. Stepwise regression shows a strong tendency to overparameterize which

Table 4S. Dgp3, product x1*x2, RETINA vs. stepwise

n=100 n=200 n=1000
R2=0.75 RETINA 98.6 99.1 99.2

0.37 0.3 0.28
0.74 0.6 0.56

R2=0.75 step 21.5 16.9 18.4
R2=0.50 RETINA 96.2 99.1 99.4

0.6 0.3 0.24
1.2 0.6 0.48

R2=0.50 step 27.3 21.6 19.6
R2=0.25 RETINA 75.9 94.2 99.5

1.35 0.74 0.22
2.7 1.48 0.44

R2=0.25 step 28.6 28.6 21.7

Average number of excess regressors in overparameterized models by
stepwise in Table 4S. Dgp3, product x1*x2, and % overparameterizations.

n=100 n=200 n=1000
R

2
=0.75 2.9 2.83 2.85

93.40% 93.60% 93.60%
R2=0.50 2.9 2.83 2.85

93.40% 93.60% 93.60%
R

2
=0.25 2.93 2.83 2.85

92.10% 93.60% 93.60%

 Figure 4S. Dgp3, x1*x2, RETINA vs.
stepwise
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occurs over 92% of the time. When it overparameterizes, stepwise uses on average

between 2.93 and 2.83 extra regressors when only 2 of them belong in DGP3.

3.4 RETINA vs. stepwise regression, DGP6, 5% outliers.

In this experiment we use DGP6, which incorporates outliers. Using exactly the

same data for RETINA and for stepwise regression, we find that RETINA outperforms

stepwise regression for all combinations of sample size and R2, except for n=100 and

R2=0.25.  The percentage of successes of stepwise is decreasing with n and does not

improve with R2. Stepwise consistently overparameterizes between 58 and 76% of the

time, adding on average between 2.44 and 3.12 extra regressors.

Table 7S. Dgp6, linear with 5% outliers in u, RETINA and stepwise

n=100 n=200 n=1000
R

2
=0.75 95.4 98.7 98.9

0.66 0.36 0.33
1.32 0.72 0.66

R
2
=0.75 step 29.5 24.3 23.3

R
2
=0.50 64.9 93.2 98.9

1.51 0.8 0.33
0.66 0.36 0.33

 R
2
=0.50 step 29.1 24.3 23.3

R
2
=0.25 19.5 47.5 98.6

1.25 1.58 0.37
0.66 0.36 0.33

R
2
=0.25 step 25.9 24.1 23.3

 Average number of excess regressors in overparameterized models,

 stepwise in Table 7S Dgp4, 5% outliers, and % overparameterizations.

n=100 n=200 n=1000
R2=0.75 2.78 2.54 2.44

70.50% 75.70% 76.70%
R

2
=0.50 2.81 2.54 2.44

69.40% 75.70% 2.44%
R2=0.25 3.12 2.55 2.44

58.40% 74.70% 76.70%

Figure 7S. Dgp4, linear 5% outliers in u, RETINA and
stepwise

95.4
98.7

29.5
24.3 23.323.323.3

98.9

64.9

98.9

93.2

19.5

98.6

47.5

24.3
29.1

24.1
25.9

0

10

20

30

40

50

60

70

80

90

100

n=100 n=200 n=1000sample size

%
 s

u
cc

es
se

s

R
2
=0.75

R
2
=0.50

R
2
=0.25

R
2
=0.75 step

R
2
=0.50 step

R
2
=0.25 step


