149 research outputs found

    Improving word sense disambiguation in lexical chaining

    Get PDF
    Previous algorithms to compute lexical chains suffer either from a lack of accuracy in word sense disambiguation (WSD) or from computational inefficiency. In this paper, we present a new linear-time algorithm for lexical chaining that adopts the assumption of one sense per discourse. Our results show an improvement over previous algorithms when evaluated on a WSD task

    Deep Reinforcement Learning for Dialogue Generation

    Full text link
    Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues

    What’s in a Translation Rule?

    Get PDF
    We propose a theory that gives formal semantics to word-level alignments defined over parallel corpora. We use our theory to introduce a linear algorithm that can be used to derive from word-aligned, parallel corpora the minimal set of syntactically motivated transformation rules that explain human translation data

    A Survey of Current Datasets for Vision and Language Research

    Full text link
    Integrating vision and language has long been a dream in work on artificial intelligence (AI). In the past two years, we have witnessed an explosion of work that brings together vision and language from images to videos and beyond. The available corpora have played a crucial role in advancing this area of research. In this paper, we propose a set of quality metrics for evaluating and analyzing the vision & language datasets and categorize them accordingly. Our analyses show that the most recent datasets have been using more complex language and more abstract concepts, however, there are different strengths and weaknesses in each.Comment: To appear in EMNLP 2015, short proceedings. Dataset analysis and discussion expanded, including an initial examination into reporting bias for one of them. F.F. and N.M. contributed equally to this wor
    • …
    corecore