
Improving Word Sense Disambiguation in Lexical Chaining

Michel Galley and Kathleen McKeown
Columbia University

Department of Computer Science
New York, NY 10027, USA

{galley,kathy}@cs.columbia.edu

Abstract

Previous algorithms to compute lexical chains suf-
fer either from a lack of accuracy in word sense
disambiguation (WSD) or from computational in-
efficiency. In this paper, we present a new linear-
time algorithm for lexical chaining that adopts the
assumption of one sense per discourse. Our results
show an improvement over previous algorithms
when evaluated on a WSD task.

1 Introduction
Passages from spoken or written text have a quality of unity
that arises in part from the surface properties of the text;
syntactic and lexical devices can be used to create a sense of
connectedness between sentences, a phenomenon known as
textual cohesion [Halliday and Hasan, 1976]. Of all cohesion
devices, lexical cohesion is probably the most amenable
to automatic identification [Hoey, 1991]. Lexical cohesion
arises when words are related semantically, for example
in reiteration relations between a term and a synonym or
superordinate.

Lexical chaining is the process of connecting semantically
related words, creating a set of chains that represent different
threads of cohesion through the text. This intermediate
representation of text has been used in many natural language
processing applications, including automatic summarization
[Barzilay and Elhadad, 1997; Silber and McCoy, 2003], infor-
mation retrieval [Al-Halimi and Kazman, 1998], intelligent
spell checking [Hirst and St-Onge, 1998], topic segmentation
[Kan et al., 1998], and hypertext construction [Green, 1998].

A first computational model of lexical chains was in-
troduced by Hirst and St-Onge [1998]. This linear-time
algorithm, however, suffers from inaccurate WSD, since their
greedy strategy immediately disambiguates a word as it is
first encountered. Later research [Barzilay and Elhadad,
1997] significantly alleviated this problem at the cost of a
worse running time (quadratic); computational inefficiency
is due to their processing of many possible combinations of
word senses in the text in order to decide which assignment is
the most likely. More recently, Silber and McCoy [2003] pre-
sented an efficient linear-time algorithm to compute lexical
chains, which models Barzilay’s approach, but nonetheless
has inaccuracies in WSD.

In this paper, we further investigate the automatic identifi-
cation of lexical chains for subsequent use as an intermediate
representation of text. In the next section, we propose a new
algorithm that runs in linear time and adopts the assumption
of one sense per discourse [Gale et al., 1992]. We suggest
that separating WSD from the actual chaining of words can
increase the quality of chains. In the last section, we present
an evaluation of the lexical chaining algorithm proposed in
this paper, and compare it against [Barzilay and Elhadad,
1997; Silber and McCoy, 2003] for the task of WSD. This
evaluation shows that our algorithm performs significantly
better than the other two.

2 Lexical Chaining with a Word Sense
Disambiguation Methodology

Our algorithm uses WordNet [Miller, 1990] as a knowledge
source to build chains of candidate words (nouns) that are
related semantically. We assign a weight to each semantic
relation; in our work semantic relations are restricted to
hypernyms/hyponyms (e.g. between cat and feline) and
siblings (hyponyms of hypernyms, e.g. dog and wolf).
Distance factors for each type of semantic relation prevent
the linkage of words that are too far apart in the text; these
factors are summarized in Table 1.

The algorithm can be decomposed into three steps: build-
ing a representation of all possible interpretations of the text,
disambiguating all words, and finally building the lexical
chains. First, similarly to [Silber and McCoy, 2003], we
process the whole text and collect all semantic relations
between candidate words under any of their respective senses.
No disambiguation is done at this point; the only purpose is to
build a representation used in the next stages of the algorithm.
Note that this is the only stage where the text is read; all
later stages work on this implicit representation of possible
interpretations, called a disambiguation graph (Figure 1).
In this kind of graph, nodes represent word instances and
weighted edges represent semantic relations. Since WordNet
doesn’t relate words but senses, each node is divided into as
many senses as the noun has, and each edge connects exactly
two noun senses.

This representation can be built in linear time by first build-
ing an array indexed by senses of WordNet and processing a
text sequentially, inserting a copy of each candidate word into

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161444261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Semantic relation 1 sent. 3 sent. 1 par. other
synonym 1 1 0.5 0.5

hypernym/hyponym 1 0.5 0.3 0.3
sibling 1 0.3 0.2 0

Table 1: Weights of relations depending on the kind of
semantic relationship and distance (in number of sentences
or paragraphs) between two words.

BANK

#3: reserve

#2: slope

FALL

CREDIT
UNION

#1: autumn

#2: spill,
tumple

ACQUIRER

#3: descent,
declivity

#1: financial
institution

Figure 1: A disambiguation graph, an implicit representation
of word-sense combinations (in this example, all weights are
equal to 1.)

all entries that are valid senses of this word (for example, in
Figure 2, the instances car and auto have been inserted under
the same sense in the array). Then, we check whether the
noun instance that was just inserted is semantically related
to other nouns already present in the array. We do so by
looking at hypernyms, hyponyms, and siblings, and if any
of these related senses have non-empty entries in the array,
we create the appropriate links in the disambiguation graph.
For example, in Figure 2, the algorithm finds an hyponymy
relation between the noun taxi (under its unique sense in
the array) and another entry in the array containing car and
auto, so semantic links are added to the disambiguation graph
between these two words and taxi (shown here attached to
the array). Processing all nouns this way, we can create
all semantic links in the disambiguation graph in time O(n)
(where n is the number of candidate words.)

In the second step, we use the disambiguation graph to
perform WSD, enforcing the constraint of one sense per

array indexed

by senses of WordNet

AUTO

CAR

2573998 2573999 2574000

TAXI

candidate

noun

hypernym synonym

Figure 2: First pass of the algorithm: using an array, we can
build the disambiguation graph in linear time.

discourse. We perform the disambiguation of every word,
instead of disambiguating word occurrences as in e.g. [Hirst
and St-Onge, 1998; Silber and McCoy, 2003]. We process
all occurrences (nodes) of one word at a time, and sum the
weight of all edges leaving these nodes under their different
senses. The one sense of the word that is assigned the highest
score (sum of weights) is considered the most probable sense.
For example in Figure 1, the sense of bank that has the
highest score is financial institution. That sense is assigned
to all occurrences of the word; in other words, we impose the
constraint of one sense per discourse. In case of a tie between
two or more senses, we select the one sense that comes first
in WordNet, since WordNet orders the senses of a word by
decreasing order of frequency.

The final step is to build the actual lexical chains by
processing the entire disambiguation graph. At this point, we
have already assigned a sense to each word, so the last step is
to remove from the disambiguation graph all semantic links
that connect words taken under their (assumed) wrong senses.
Once all such edges have been removed, we are left with the
semantic links corresponding to a unique interpretation of the
text, and the edges that remain in the graph are the actual
lexical chains of our algorithm.1

The separation of WSD and lexical chaining into two
different sub-tasks is important. All semantic relations,
whether correct or incorrect, can be investigated in WSD
without necessarily creating incorrect semantic relations in
the chaining process. Words are disambiguated by summing
weights of semantic relations, but mistakenly counting edges
relating words under wrong senses (as in Figure 2 between
fall and bank) doesn’t necessarily have the undesirable effect
of linking the two words in the same chain. Our assumption
is that summing edge weights generally helps in selecting the
right senses, e.g. bank is disambiguated as a financial institu-
tion, and fall and bank are thus prevented from appearing in
the same chain.

3 Evaluation
The evaluation of lexical chains is generally difficult. Even
if they can be effectively used in many practical applica-
tions like automatic summarization, topic segmentation, and
others, lexical chains are seldom desirable outputs in a real-
world application, and it is unclear how to assess their quality
independently of the underlying application in which they are
used. For example, in summarization, it is hard to determine
whether a good or bad performance comes from the efficiency
of the lexical chaining algorithm or from the appropriateness
of using lexical chains in that kind of application. In
this section, we evaluate lexical chaining algorithms on the
basis of WSD. This arguably is independent of any targeted

1Our algorithm has some similarities with Silber and McCoy’s
algorithm, but it is actually quite different. First, they process
each noun instance separately; thus, nothing prevents a noun from
having different senses in the same discourse. Second, they process
the entire text twice instead of once. In the second pass of their
algorithm, they perform WSD and the actual chaining at the same
time, whereas we postpone the chaining process until each word has
been fully disambiguated.



Algorithm Accuracy
Barzilay and Elhadad 56.56%

Silber and McCoy 54.48%
Galley and McKeown 62.09%

Table 2: Accuracy of noun disambiguation on semcor.

application, since any lexical chaining algorithm has to deal
with the problem of WSD. We do not attempt to further
evaluate other aspects of chains.

We tested three lexical chaining algorithms on the semantic
concordance corpus (semcor), a corpus that was extracted
from the Brown Corpus and semantically tagged with Word-
Net senses. We limited our evaluation to a set of 74
documents of that corpus; this represents about 35,000 nouns.
WSD was evaluated on nouns, since all three algorithms that
were tested (Barzilay and Elhadad; Silber and McCoy, and
ours) build lexical chains with nouns only. We used the
original implementation of Barzilay and Elhadad’s algorithm,
but had to implement Silber and McCoy’s algorithm since
we didn’t have access to their source code. We tested the
accuracy of WSD on the set of 35,000 nouns and obtained
the results presented in Table 2;2 accuracy by polysemy
is displayed in Figure 3. We can see that our algorithm
outperforms Barzilay and Elhadad’s, and a one-sided t-test3

of the null hypothesis of equal means shows significance at
the .001 level (p = 4.52 ·10−4). Barzilay and Elhadad in turn
outperform Silber and McCoy, but this result is not significant
at the basic .05 level (p = 0.0537).

4 Conclusions

In this paper, we presented an efficient linear-time algo-
rithm to build lexical chains, showing that one sense per
discourse can improve performance. We explained how
the separation of WSD from the construction of the chains
enables a simplification of the task and improves running
time. The evaluation of our algorithm against two known
lexical chaining algorithms shows that our algorithm is more
accurate when it chooses the senses of nouns to include
in lexical chains. The implementation of our algorithm
is freely available for educational or research purposes at
http://www.cs.columbia.edu/˜galley/research.html.

Acknowledgments

We thank Regina Barzilay, the three anonymous reviewers,
and the Columbia natural language group members for help-
ful advice and comments.

2In Barzilay and Elhadad’s algorithm, a word can sometimes
belong to two different chains. In order to map each word to
one single sense, we applied the strong chain sense disambiguation
strategy described in [Barzilay, 1997] (i.e. picking the word sense
used in the strongest chain).

3The samples in the t-test are the WSD accuracies on each
individual documents.

2 3 4 5 6 7 8 9 10
Polysemy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
SD

 a
cc

ur
ac

y

Barzilay and Elhadad
Silber and McCoy
Galley and McKeown

Figure 3: Accuracy by polysemy of the three algorithms.

References
[Al-Halimi and Kazman, 1998] R. Al-Halimi and R. Kaz-

man. Temporal indexing of video through lexical chaining.
In WordNet: An electronic lexical database. MIT Press,
1998.

[Barzilay and Elhadad, 1997] R. Barzilay and M. Elhadad.
Using lexical chains for text summarization. In Proc.
of the Intelligent Scalable Text Summarization Workshop
(ISTS’97), ACL, 1997.

[Barzilay, 1997] R. Barzilay. Lexical chains for summariza-
tion. Master’s thesis, Ben-Gurion University, 1997.

[Gale et al., 1992] W. Gale, K. Church, and D. Yarowsky.
One sense per discourse. In Proc. of the DARPA Speech
and Natural Language Workshop, 1992.

[Green, 1998] S. Green. Automated link generation: Can
we do better than term repetition? In Proc. of the 7th
International World-Wide Web Conference, 1998.

[Halliday and Hasan, 1976] M. Halliday and R. Hasan. Co-
hesion in English. Longman, London, 1976.

[Hirst and St-Onge, 1998] G. Hirst and D. St-Onge. Lexical
chains as representations of context for the detection and
correction of malapropisms. In WordNet: An electronic
lexical database. MIT Press, 1998.

[Hoey, 1991] M. Hoey. Patterns of lexis in text. Oxford
University Press, 1991.

[Kan et al., 1998] M.-Y. Kan, J. Klavans, and K. McKeown.
Linear segmentation and segment significance. In Proc.
of the 6th Workshop on Very Large Corpora (WVLC-98),
1998.

[Miller, 1990] G. Miller. WordNet: An on-line lexi-
cal database. International Journal of Lexicography,
3(4):235–312, 1990.

[Silber and McCoy, 2003] G. Silber and K. McCoy. Ef-
ficiently computed lexical chains as an intermediate
representation for automatic text summarization. Compu-
tational Linguistics, 29(1), 2003.


