898 research outputs found

    Evidence for Partial Taylor Relaxation from Changes in Magnetic Geometry and Energy during a Solar Flare

    Full text link
    Solar flares are powered by energy stored in the coronal magnetic field, a portion of which is released when the field reconfigures into a lower energy state. Investigation of sunspot magnetic field topology during flare activity is useful to improve our understanding of flaring processes. Here we investigate the deviation of the non-linear field configuration from that of the linear and potential configurations, and study the free energy available leading up to and after a flare. The evolution of the magnetic field in NOAA region 10953 was examined using data from Hinode/SOT-SP, over a period of 12 hours leading up to and after a GOES B1.0 flare. Previous work on this region found pre- and post-flare changes in photospheric vector magnetic field parameters of flux elements outside the primary sunspot. 3D geometry was thus investigated using potential, linear force-free, and non-linear force-free field extrapolations in order to fully understand the evolution of the field lines. Traced field line geometrical and footpoint orientation differences show that the field does not completely relax to a fully potential or linear force-free state after the flare. Magnetic and free magnetic energies increase significantly ~ 6.5-2.5 hours before the flare by ~ 10^31 erg. After the flare, the non-linear force-free magnetic energy and free magnetic energies decrease but do not return to pre-flare 'quiet' values. The post-flare non-linear force-free field configuration is closer (but not equal) to that of the linear force-free field configuration than a potential one. However, the small degree of similarity suggests that partial Taylor relaxation has occurred over a time scale of ~ 3-4 hours.Comment: Accepted for Publication in Astronomy & Astrophysics. 11 pages, 11 figure

    Automated Coronal Hole Identification via Multi-Thermal Intensity Segmentation

    Full text link
    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single EUV passband and magnetogram images to extract CH information. Here, the Coronal Hole Identification via Multi-thermal Emission Recognition Algorithm (CHIMERA) is described, which analyses multi-thermal images from the Atmospheric Image Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 \AA, 193 \AA, and 211 \AA). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms

    Low frequency radio observations of bi-directional electron beams in the solar corona

    Get PDF
    The radio signature of a shock travelling through the solar corona is known as a type II solar radio burst. In rare cases these bursts can exhibit a fine structure known as `herringbones', which are a direct indicator of particle acceleration occurring at the shock front. However, few studies have been performed on herringbones and the details of the underlying particle acceleration processes are unknown. Here, we use an image processing technique known as the Hough transform to statistically analyse the herringbone fine structure in a radio burst at ∼\sim20-90 MHz observed from the Rosse Solar-Terrestrial Observatory on 2011 September 22. We identify 188 individual bursts which are signatures of bi-directional electron beams continuously accelerated to speeds of 0.16−0.10+0.11c_{-0.10}^{+0.11} c. This occurs at a shock acceleration site initially at a constant altitude of ∼\sim0.6 R⊙_{\odot} in the corona, followed by a shift to ∼\sim0.5 R⊙_{\odot}. The anti-sunward beams travel a distance of 170−97+174_{-97}^{+174} Mm (and possibly further) away from the acceleration site, while those travelling toward the sun come to a stop sooner, reaching a smaller distance of 112−76+84_{-76}^{+84} Mm. We show that the stopping distance for the sunward beams may depend on the total number density and the velocity of the beam. Our study concludes that a detailed statistical analysis of herringbone fine structure can provide information on the physical properties of the corona which lead to these relatively rare radio bursts

    Understanding CME and associated shock in the solar corona by merging multi wavelengths observation

    Full text link
    Using multi-wavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a CME which interact during more than 30 min, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration which has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of large Active Region (AR). The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system which becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient medium. The progression of the CME is closely associated with the occurrence of two successive types II bursts from distinct origin. An important part of this study is the first radio type II burst for which the joint spectral and imaging observations allowed: i) to follow, step by step, the evolution of the spectrum and of the trajectory of the radio burst, in relationship with the CME evolution; ii) to obtain, without introducing an electronic density model, the B-field and the Alfven speed.Comment: 17 pages, 13 figure

    One-dimensional Rydberg Gas in a Magnetoelectric Trap

    Full text link
    We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the critical linear density of Rydberg atoms.Comment: 4 pages, 2 figure

    A Significant Sudden Ionospheric Disturbance associated with Gamma-Ray Burst GRB 221009A

    Full text link
    We report the detection of a significant ionospheric disturbance in the D-region of Earth's ionosphere which was associated with the massive gamma-ray burst GRB 221009A that occurred on October 9 2022. We identified the disturbance over northern Europe - a result of the increased ionisation by X- and gamma-ray emission from the GRB - using very low frequency (VLF) radio waves as a probe of the D-region. These observations demonstrate that an extra-galactic GRB can have a significant impact on the terrestrial ionosphere and illustrates that the Earth's ionosphere can be used as a giant X- and gamma-ray detector. Indeed, these observations may provide insights into the impacts of GRBs on the ionospheres of planets in our solar system and beyond.Comment: 3 pages, 1 figur
    • …
    corecore