27 research outputs found

    Fabrication and Resistivity of IBr Intercalated Vapor-Grown Carbon Fiber Composites

    Get PDF
    Composites using vapor-crown carbon fibers (VGCF), the most conductive of the carbon fiber types, are attractive for applications where low density, high strength, and at least moderate conductivity are required, such as electromagnetic interference shielding covers for spacecraft. The conductivity can be enhanced another order of magnitude by intercalation of the VGCF. If a high Z intercalate is used, the protection of components from ionizing radiation can be enhanced also. Thus, the intercalation of VGCF with IBr is reported. Since composite testing is required to verify properties, the intercalation reaction optimization, stability of the intercalation compound, scale-up of the intercalation reaction, composite fabrication, and resistivity of the resulting composites is also reported. The optimum conditions for low resistivity and uniformity for the scaled up reaction (20-30 g of product) were 114 C for at least 72 hr, yielding a fiber with a resistivity of 8.7+/-2 micro-Omega-cm. The thermal stability of these fibers was poor, with degradation occurring at temperatures as low as 40 C in air, though they were insensitive to water vapor. Composite resistivity was 20-30 micro-Omega-cm, as measured by contactless conductivity measurements, about a factor of five higher than would be expected from a simple rule of mixtures. The addition of 1.0 percent Br2, intercalated microfibers increased the resistivity of the composites by more than 20 percent

    The ASAC Air Carrier Investment Model (Third Generation)

    Get PDF
    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC

    Genetic Determinants of Amidating Enzyme Activity and its Relationship with Metal Cofactors in Human Serum

    Get PDF
    Abstract BACKGROUND: α-amidation is a final, essential step in the biosynthesis of about half of all peptide hormones and neurotransmitters. Peptidylglycine α-amidating monooxygenase (PAM), with enzymatic domains that utilize Cu and Zn, is the only enzyme that catalyzes this reaction. PAM activity is detected in serum, but its significance and utility as a clinical biomarker remain unexplored. METHODS: We used well-established enzymatic assays specific for the peptidylglycine-α -hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domains of PAM to quantify amidating activity in the sera of 144 elderly men. Relationships between PHM and PAL activity and serum levels of their respective active-site metals, Cu and Zn, were analyzed. Study participants were also genotyped for eight non-coding single nucleotide polymorphisms (SNPs) in PAM, and relationships between genotype and serum enzyme activity and metal levels were analyzed. RESULTS: Serum PHM and PAL activities were normally distributed and correlated linearly with each other. Serum PAL activity, but not serum PHM activity, correlated with serum Cu; neither activity correlated with serum Zn. Study subjects possessing the minor alleles for rs32680 had lower PHM and PAL activities, and subjects with minor alleles for rs11952361 and rs10515341 had lower PHM activities. CONCLUSIONS: Our results characterize large variation in serum amidating activity and provide unique insight into its potential origin and determinants. Common non-coding polymorphisms affect serum amidating activity and Cu levels. Serum amidating activity should be explored as a biomarker for functionality in the elderly and in additional study groups

    Ultra-Low-Noise W-Band MMIC Detector Modules

    Get PDF
    A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes

    The NASA STI Program Office provides

    No full text
    Since its founding, NASA has been dedicated to the advancement of aeronautics and spac

    Emerging therapies for amblyopia

    No full text
    Traditional therapies to treat amblyopia, such as optical correction or occlusion/penalization of the non-amblyopic eye, are efficacious but are not without limitations such as poor adherence and decreased success with increasing age. Recently, there has been an interest in new amblyopia therapies, some using binocular techniques, through a variety of platforms including video games, movies, and virtual reality. Overall, available efficacy results for these treatments are highly variable
    corecore