43 research outputs found

    Folding Circular Permutants of IL-1ÎČ: Route Selection Driven by Functional Frustration

    Get PDF
    Interleukin-1ÎČ (IL-1ÎČ) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the ÎČ-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the ÎČ-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT “functional loop-packing route”, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins

    Differences in the Pathways of Proteins Unfolding Induced by Urea and Guanidine Hydrochloride: Molten Globule State and Aggregates

    Get PDF
    It was shown that at low concentrations guanidine hydrochloride (GdnHCl) can cause aggregation of proteins in partially folded state and that fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) binds with these aggregates rather than with hydrophobic clusters on the surface of protein in molten globule state. That is why the increase in ANS fluorescence intensity is often recorded in the pathway of protein denaturation by GdnHCl, but not by urea. So what was previously believed to be the molten globule state in the pathway of protein denaturation by GdnHCl, in reality, for some proteins represents the aggregates of partially folded molecules

    Physico-chemical properties of molten dimer ascorbate oxidase

    No full text
    The possible presence of dimeric unfolding intermediates might offer a clue to understanding the relationship between tertiary and quaternary structure formation in dimers. Ascorbate oxidase is a large dimeric enzyme that displays such an intermediate along its unfolding pathway. In this study the combined effect of high pressure and denaturing agents gave new insight on this intermediate and on the mechanism of its formation. The transition from native dimer to the dimeric intermediate is characterized by the release of copper ions forming the tri-nuclear copper center located at the interface between domain 2 and 3 of each subunit. This transition, which is pH-dependent, is accompanied by a decrease in volume, probably associated to electrostriction due to the loosening of intra-subunit electrostatic interactions. The dimeric species is present even at 3 x 10(8) Pa, providing evidence that mechanically or chemically induced unfolding lead to a similar intermediate state. Instead, dissociation occurs with an extremely large and negative volume change (DeltaV approximately -200 mL.mol(-1)) by pressurization in the presence of moderate amounts of denaturant. This volume change can be ascribed to the elimination of voids at the subunit interface. Furthermore, the combination of guanidine and high pressure uncovers the presence of a marginally stable (DeltaG approximately 2 kcal.mol(-1)) monomeric species (which was not observed in previous equilibrium unfolding measurements) that might be populated in the early folding steps of ascorbate oxidase. These findings provide new aspects of the protein folding pathway, further supporting the important role of quaternary interactions in the folding strategy of large dimeric enzymes
    corecore