7,184 research outputs found

    Graphene-based spin-pumping transistor

    Full text link
    We demonstrate with a fully quantum-mechanical approach that graphene can function as gate-controllable transistors for pumped spin currents, i.e., a stream of angular momentum induced by the precession of adjacent magnetizations, which exists in the absence of net charge currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption

    Graphene as a non-magnetic spin-current lens

    Full text link
    In spintronics, the ability to transport magnetic information often depends on the existence of a spin current traveling between two different magnetic objects acting as source and probe. A large fraction of this information never reaches the probe and is lost because the spin current tends to travel omni-directionally. We propose that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure

    Turbulence driven particle transport in Texas Helimak

    Full text link
    We analyze the turbulence driven particle transport in Texas Helimak (K. W. Gentle and Huang He, Plasma Sci. and Technology, 10, 284 (2008)), a toroidal plasma device with one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. For negative biased plasma discharges, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias the plasma has a reversed shear flow and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region.Comment: 8 pages, 11 figure

    Dynamic RKKY interaction between magnetic moments in graphene nanoribbons

    Get PDF
    Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.Comment: 10 pages, 10 figure
    • …
    corecore