64 research outputs found

    A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method

    Get PDF
    The accurate assessment of drought and its monitoring is highly depending on the selection of appropriate indices. Despite the availability of countless drought indices, due to variability in environmental properties, a single universally drought index has not been presented yet. In this study, a new approach for developing comprehensive agricultural drought index from satellite-derived biophysical parameters is presented. Therefore, the potential of satellite-derived biophysical parameters for improved understanding of the water status of pistachio (Pistachio vera L.) crop grown in a semiarid area is evaluated. Exploratory factor analysis with principal component extraction method is performed to select the most in?uential parameters from seven biophysical parameters including surface temperature (Ts), surface albedo (a), leaf area index (LAI), soil heat ?ux (Go), soil-adjusted vegetation index (SAVI), normalized difference vegetation index (NDVI), and net radiation (Rn). Ts and Gowere found as the most effective parameters by this method. However, Ts, LAI, a, and SAVI that accounts for 99.6 % of the total variance of seven inputs were selected to model a new biophysical water stress index (BPWSI). The values of BPWSI were stretched independently and compared with the range of actual evapotranspiration estimated through well-known METRIC (mapping evapotranspiration at high resolution with internal calibration) energy balance model. The results showed that BPWSI can be ef?ciently used for the prediction of the pistachio water status (RMSE of 0.52, 0.31, and 0.48 mm/day on three image dates of April 28, July 17, and August 2, 2010). The study con?rmed that crop water status is accounted by several satellite-based biophysical parameters rather than single parameter

    Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple

    Get PDF
    The medleys of the plastic-derived polypeptide with commercially available polymers believably the suitable candidate for pharmaceutical and biomedical importance. The current research is focussed on the synthesis of a novel plastic-mimetic polypeptide (PLP), poly(IPAVG) by the solution phase method (where I, P, A, V, and G represent Isoleucine, Proline, Alanine, Valine, and Glycine, respectively). The miscibility attributes of PLP/polyvinyl alcohol (PVA) and PLP/hydroxypropylmethylcellulose (HPMC) blends were examined by viscometry and by other advanced analytical tools for different weight proportions. It is shown by the viscometry that the PLP/HPMC and PLP/PVA form an immiscible blend system at 10(omicron)C and further, the FTIR spectra of poly (IPAVG) /HPMC and poly (IPAVG) /PVA blend membranes manifest the lack of intermolecular interactions. DSC results proved the dual Tg for one blend proportion and lower Tg values for all other blend systems. The thermal property of the blends with different compositions was evaluated by thermogravimetric analysis (TGA). The TGA results showed that the blends possess inferior thermal stability to the native ones. The surface morphology was analyzed by SEM indicated the heterogeneity and X-ray diffraction (XRD) revealed the absence of any change in crystallinity advocated the immiscibility of the blends. Further, we ventured to prepare the non-woven fabrics from the solutions of 1-10 wt% concentrations at the voltages within 20-30 kV by electrospinning. The droplet formed at the spinneret failed to reach the collector plate, and consequently, no films developed for the collector device
    corecore