45 research outputs found

    Site directed biotinylation of filamentous phage structural proteins

    Get PDF
    Filamentous bacteriophages have been used in numerous applications for the display of antibodies and random peptide libraries. Here we describe the introduction of a 13 amino acid sequence LASIFEAQKIEWR (designated BT, which is biotinylated in vivo by E. coli) into the N termini of four of the five structural proteins of the filamentous bacteriophage fd (Proteins 3, 7, 8 and 9). The in vivo and in vitro biotinylation of the various phages were compared. The production of multifunctional phages and their application as affinity reagents are demonstrated

    Identification of Vascular and Hematopoietic Genes Downstream of etsrp by Deep Sequencing in Zebrafish

    Get PDF
    The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology

    Low omega-6 vs. low omega-6 plus high omega-3 dietary intervention for Chronic Daily Headache: Protocol for a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeted analgesic dietary interventions are a promising strategy for alleviating pain and improving quality of life in patients with persistent pain syndromes, such as chronic daily headache (CDH). High intakes of the omega-6 (n-6) polyunsaturated fatty acids (PUFAs), linoleic acid (LA) and arachidonic acid (AA) may promote physical pain by increasing the abundance, and subsequent metabolism, of LA and AA in immune and nervous system tissues. Here we describe methodology for an ongoing randomized clinical trial comparing the metabolic and clinical effects of a low n-6, average n-3 PUFA diet, to the effects of a low n-6 plus high n-3 PUFA diet, in patients with CDH. Our primary aim is to determine if: A) both diets reduce n-6 PUFAs in plasma and erythrocyte lipid pools, compared to baseline; and B) the low n-6 plus high n-3 diet produces a greater decline in n-6 PUFAs, compared to the low n-6 diet alone. Secondary clinical outcomes include headache-specific quality-of-life, and headache frequency and intensity.</p> <p>Methods</p> <p>Adults meeting the International Classification of Headache Disorders criteria for CDH are included. After a 6-week baseline phase, participants are randomized to a low n-6 diet, or a low n-6 plus high n-3 diet, for 12 weeks. Foods meeting nutrient intake targets are provided for 2 meals and 2 snacks per day. A research dietitian provides intensive dietary counseling at 2-week intervals. Web-based intervention materials complement dietitian advice. Blood and clinical outcome data are collected every 4 weeks.</p> <p>Results</p> <p>Subject recruitment and retention has been excellent; 35 of 40 randomized participants completed the 12-week intervention. Preliminary blinded analysis of composite data from the first 20 participants found significant reductions in erythrocyte n-6 LA, AA and %n-6 in HUFA, and increases in n-3 EPA, DHA and the omega-3 index, indicating adherence.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/(NCT01157208)">(NCT01157208)</a></p

    An improved upper bound for the length of preset distinguishing sequences of distinguished merging finite state machines

    No full text
    In an earlier work, we have studied a special class of Finite State Machines (FSMs) called Distinguished Merging FSMs (DMFSMs) and showed that one can construct a Preset Distinguishing Sequence (PDS) for a DMFSM with n states, p input symbols, and r output symbols in time O(n^4 + pn^2) of length no longer than O(n^3). In this work, we improve the upper bound for the length of a PDS to (n-1)^2, and present an algorithm to construct such a PDS for a DMFSM in time O(n^4 + pn^2) or in time O(rn^3 + pn^2)

    Impaired DNA damage checkpoint response in MIF-deficient mice

    No full text
    Recent studies demonstrated that proinflammatory migration inhibitory factor(MIF) blocks p53-dependent apoptosis and interferes with the tumor suppressor activity of p53. To explore the mechanism underlying this MIF-p53 relationship, we studied spontaneous tumorigenesis in genetically matched p53−/− and MIF−/−p53−/− mice. We show that the loss of MIF expression aggravates the tumor-prone phenotype of p53−/− mice and predisposes them to a broader tumor spectrum, including B-cell lymphomas and carcinomas. Impaired DNA damage response is at the root of tumor predisposition of MIF−/−p53−/− mice. We provide evidence that MIF plays a role in regulating the activity of Cul1-containing SCF ubiquitin ligases. The loss of MIF expression uncouples Chk1/Chk2-responsive DNA damage checkpoints from SCF-dependent degradation of key cell-cycle regulators such as Cdc25A, E2F1 and DP1, creating conditions for the genetic instability of cells. These MIF effects depend on its association with the Jab1/CSN5 subunit of the COP9/CSN signalosome. Given that CSN plays a central role in the assembly of SCF complexes in vivo, regulation of Jab1/CSN5 by MIF is required to sustain optimal composition and function of the SCF complex

    Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis

    No full text
    Neurotransmitter release is triggered by Ca2+ ions binding to an unknown Ca2+ receptor within presynaptic terminals. Synaptotagmin, a Ca2(+)-binding protein of synaptic and other secretory vesicles, has been proposed to mediate vesicle-plasma membrane interactions during neurotransmitter release. Here we test this hypothesis using the giant synapse of the squid Loligo pealei, which because of its unusually large size and well established physiology is uniquely suited for dissecting presynaptic events. We find that injection of peptides from the C2 domains of synaptotagmin into squid giant presynaptic terminals rapidly and reversibly inhibits neurotransmitter release. Our data are consistent with these peptides competitively blocking release after synaptic vesicle docking and indicate that Ca2+ probably initiates neurotransmitter release by regulating the interaction of synaptotagmin with an acceptor protein
    corecore