154 research outputs found

    Cerebrospinal and Blood Biomarkers in Alzheimer's Disease: Did Mild Cognitive Impairment Definition Affect Their Clinical Usefulness?

    Get PDF
    Despite Alzheimer's Disease (AD) being known from the times of Alois Alzheimer, who lived more than one century ago, many aspects of the disease are still obscure, including the pathogenesis, the clinical spectrum definition, and the therapeutic approach. Well-established biomarkers for AD come from the histopathological hallmarks of the disease, which are A beta and phosphorylated Tau protein aggregates. Consistently, cerebrospinal fluid (CSF) Amyloid beta (A beta) and phosphorylated Tau level measurements are currently used to detect AD presence. However, two central biases affect these biomarkers. Firstly, incomplete knowledge of the pathogenesis of diseases legitimates the search for novel molecules that, reasonably, could be expressed by neurons and microglia and could be detected in blood simpler and earlier than the classical markers and in a higher amount. Further, studies have been performed to evaluate whether CSF biomarkers can predict AD onset in Mild Cognitive Impairment (MCI) patients. However, the MCI definition has changed over time. Hence, the studies on MCI patients seem to be biased at the beginning due to the imprecise enrollment and heterogeneous composition of the miscellaneous MCI subgroup. Plasma biomarkers and novel candidate molecules, such as microglia biomarkers, have been tentatively investigated and could represent valuable targets for diagnosing and monitoring AD. Also, novel AD markers are urgently needed to identify molecular targets for treatment strategies. This review article summarizes the main CSF and blood AD biomarkers, underpins their advantages and flaws, and mentions novel molecules that can be used as potential biomarkers for AD

    3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    Get PDF
    We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability

    Poly-Left-Lactic Acid tubular scaffolds via Diffusion Induced Phase Separation (DIPS): control of morphology

    Get PDF
    n this work, tubular poly-left-lactic acid scaffolds for vascular tissue engineering applications were produced by an innovative two-step method. The scaffolds were obtained by performing a dip-coating around a nylon fiber, followed by a diffusion induced phase separation process. Morphological analysis revealed that the internal lumen of the as-obtained scaffold is equal to the diameter of the fiber utilized; the internal surface is homogeneous with micropores 1–2 μm large. Moreover, a porous open structure was detected across the thickness of the walls of the scaffold. An accurate analysis of the preparation process revealed that it is possible to tune up the morphology of the scaffold (wall thickness, porosity, and average pore dimension), simply by varying some experimental parameters. Preliminary in vitro cell culture tests were carried out inside the scaffold. The results showed that cells are able to grow within the internal surface of the scaffolds and after 3 weeks they begin to form a “primordial” vessel-like structure. Modeling predictions of the dip-coating process display always an underestimate of experimental data (dependence of wall thickness upon extraction rate).In this work, tubular poly-left-lactic acid scaffolds for vascular tissue engineering applications were produced by an innovative two-step method. The scaffolds were obtained by performing a dip-coating around a nylon fiber, followed by a diffusion induced phase separation process. Morphological analysis revealed that the internal lumen of the as-obtained scaffold is equal to the diameter of the fiber utilized; the internal surface is homogeneous with micropores 1–2 lm large. Moreover, a porous open structure was detected across the thickness of the walls of the scaffold. An accurate analysis of the preparation process revealed that it is possible to tune up the morphology of the scaffold (wall thickness, porosity, and average pore dimension), simply by varying some experimental parameters. Preliminary in vitro cell culture tests were carried out inside the scaffold. The results showed that cells are able to grow within the internal surface of the scaffolds and after 3 weeks they begin to form a ‘‘primordial’’ vessel-like structure. Modeling predictions of the dipcoating process display always an underestimate of experimental data (dependence of wall thickness upon extraction rate)

    Glutathione-sensitive nanogels for drug release

    Get PDF
    Nanogels (NGs) synthesized by pulsed electron-beam irradiation of semi-dilute poly (N-vinyl pyrrolidone) (PVP) aqueous solutions, at relatively low energy per pulse and doses within the sterilization dose range, represent a very interesting family of polymeric nanocarriers. Ionizing irradiation-induced crosslinking of PVP allows to control particle size, and surface chemistry of the polymer nanoparticles without making use of catalysts, organic solvents or surfactants, and with beneficial effects onto the purity and hence biocompatibility of the final products obtained. Furthermore, the availability of reactive functional groups, either generated by the radiation or purposely grafted via copolymerisation with suitable functional monomers enables the conjugation of therapeutics drug, that make them suitable nanocarriers for biomedical applications. In particular, we have developed a carboxyl-functionalized nanogel variant for glutathione-mediated delivery of a chemotherapeutic agent, Doxorubicin. The drug is linked to the nanoparticles through a linker containing a cleavable disulphide bridge, aminoethyldithiopropionic acid (AEDP). In vitro drug release experiments have shown that glutathione can induce the release of Doxorubicin, through the reduction of the disulfide bridge. These results suggest that such redox-responsive nanoparticles can deliver doxorubicin into the nuclei of tumor cells, thus inducing inhibition of cell proliferation, and provide a favourable platform to construct nanoscalar drug delivery systems for cancer therapy

    PLLA biodegradable scaffolds for angiogenesis via Diffusion Induced Phase Separation (DIPS)

    Get PDF
    A critical obstacle in tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions into the host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. For this reason it is mandatory to manufacture an implantable structure where the process of vessel formation – the angiogenesis – can take place. In this work PLLA scaffolds for vascular tissue engineering were produced by dip-coating via Diffusion Induced Phase Separation (DIPS) technique. The scaffolds, with a vessel-like shape, were obtained by performing a DIPS process around a nylon fibre whose diameter was 700 μm. The fibre was first immersed into a 4% PLLA dioxane solution and subsequently immersed into a second bath containing distilled water. The covered fibre was then rinsed in order to remove the excess of dioxane and dried; finally the internal nylon fibre was pulled out so as to obtain a hollow biodegradable PLLA fiber. SEM analysis revealed that the scaffolds have a lumen of ca. 700 μm. The internal surface is homogeneous with micropores 1–2 μm large. Moreover, a cross section analysis showed an open structure across the thickness of the scaffold walls. A cell culture of endothelial cells was carried out into the as-prepared scaffolds. The result showed that cells are able to grow within the scaffolds and after 3 weeks they begin to form a “primordial” vessel-like structure

    Water-borne Polymeric Nanoparticles for Glutathione-Mediated Intracellular Delivery of Anticancer Drugs.

    Get PDF
    A new family of water-borne, biocompatible and carboxyl- functionalized nanogels was developed for glutathione- mediated delivery of anticancer drugs. Poly(N-vinyl- pyrrolidone)-co-acrylic acid nanogels were generated by e- beam irradiation of aqueous solutions of a crosslinkable polymer, using industrial-type linear accelerators and set- ups. Nanogels physico-chemical properties and colloidal stability, in a wide pH range, were investigated. In vitro cell studies proved that the nanogels are fully biocompatible and able to quantitatively bypass cellular membrane. An anticancer drug, doxorubicin (DOX), was linked to the carboxyl groups of NGs through a spacer containing a disulphide cleavable linkage. In vitro release studies showed that glutathione is able to trigger the release of DOX through the reduction of the S-S linkage at a concentration comparable to its levels in the cytosol

    In vivo angiogenic activity induction by collagen- soaked Poly-L-lactic acid scaffolds

    Get PDF
    Angiogenesis is essential in tissue integration and it is involved in the biological response to biomaterials. Poly-L-lactic acid (PLLA), a synthetic polymer, is utilized as scaffolding to regenerate new tissues. This study investigated the short and long term degradation and the induction of neovascularization of both native PLLA (n-PLLA) and collagen type I soaked PLLA (c-PLLA) porous scaffolds, implanted subcutane- ously in balb/c mice.The comparative analysis by phase contrast, optical, and scanning electron micros- copy (SEM) of scaffolds 7 and 21 days after implantation showed a mild inflam- matory response at the implant site of c-PLLA scaffold. No significant difference in systemic immune response was detected by hematology analyzer, and by histologi- cal evaluation of lymph node and spleen features. On the contrary, immune reaction was moderate in n-PLLA. Pores of both PLLA networks laying on the muscle fibers were partially infiltrated by appositional collagen/elastin tissue, phagocytic cells, and fibroblast, with respect to the inner side. The presence of numerous and large blood vessels into pores of c-PLLA scaffolds showed an enhancing vascularization rate. These characteristics appeared to be less conspicuous in n-PLLA.At longer time points (42 and 84 days), there was low difference in inflammato- ry cell presence into scaffold pores and the number of cells infiltrating each implant was significantly decreased. In fact, we did not observe difference in the migration of inflammatory cells into PLLA scaffolds. Polymer degradation was detected in both PLLA networks, but there are no considerable differences, as confirmed by the SEM analysis.Our results suggest that tissue integration of PLLA is enhanced when it is soaked with collagen, as well as the angiogenic activity on c-PLLA. Furthermore, the colla- gen soaking makes PLLA polymer more suitable for supporting cell attachment, pro- liferation, and function by mimicking the natural extra cellular matrix.

    Galvanic Deposition of Hydroxyapatite/Chitosan/Collagen Coatings on 304 Stainless Steel

    Get PDF
    The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and reduces corrosion current density. Nevertheless, the aging in SBF led to a completely conversion of brushite into hydroxyapatite. The release of metal ions, measured after 21 days of aging in SBF solution, is very low due to the presence of coating that slow-down the corrosion rate of steel

    Use of Modified 3D Scaffolds to Improve Cell Adhesion and Drive Desired Cell Responses.

    Get PDF
    In the most common approach of tissue engineering, a polymeric scaffold with a well-defined architecture has emerged as a promising platform for cells adhesion and guide their proliferation and differentiation into the desired tissue or organ. An ideal model for the regeneration should mimic clinical conditions of tissue injury, create a permissive microenvironment for diffusion of nutrients, gases and growth factors and permit angiogenesis. In this work, we used a 3D support made of synthetic resorbable polylactic acid (PLLA), which has considerable potential because of its well-known biocompatibility and biodegradability. One of the factors that influence cell adhesion to the scaffold is its porosity degree, but surface properties represent the main driving forces that influence the composition and orientation of proteins that will be absorbed onto material surfaces. We used scaffolds in which it was possible to control pore size and that had undergone on type-I collagen treatment, to mimic the extra cellular matrix, or plasma enhanced chemical vapor deposition (PE-CVD) combined with plasma treatment, in order to modify surface chemistry of the material. Our results show different cell affinity in non-treated scaffolds compared to type-I collagen or plasma modified ones. These surface changes are of considerable interest for tissue engineering and other areas of biomaterials science, where it can be useful to improve the surface of biomedical polymers to facilitate the colonization of the structure by the cells and obtain a more rapid regeneration or tissue replacement.In the most common approach of tissue engineering, a polymeric scaffold with a well-defined architecture has emerged as a promising platform for cells adhesion and guide their proliferation and differentiation into the desired tissue or organ. An ideal model for the regeneration should mimic clinical conditions of tissue injury, create a permissive microenvironment for diffusion of nutrients, gases and growth factors and permit angiogenesis. In this work, we used a 3D support made of synthetic resorbable polylactic acid (PLLA), which has considerable potential because of its well-known biocompatibility and biodegradability. One of the factors that influence cell adhesion to the scaffold is its porosity degree, but surface properties represent the main driving forces that influence the composition and orientation of proteins that will be absorbed onto material surfaces. We used scaffolds in which it was possible to control pore size and that had undergone on type-I collagen treatment, to mimic the extra cellular matrix, or plasma enhanced chemical vapor deposition (PE-CVD) combined with plasma treatment, in order to modify surface chemistry of the material. Our results show different cell affinity in non-treated scaffolds compared to type-I collagen or plasma modified ones. These surface changes are of considerable interest for tissue engineering and other areas of biomaterials science, where it can be useful to improve the surface of biomedical polymers to facilitate the colonization of the structure by the cells and obtain a more rapid regeneration or tissue replacement. Copyright © 2012, AIDIC Servizi S.r.l
    corecore