30 research outputs found

    Molecular dynamics study of orientational order and rotational melting in clusters of TeF 6

    Full text link
    Molecular dynamics simulations of the behavior of molecules in crystalline clusters of TeF 6 were carried out on systems of 100, 150, 250, and 350 molecules. Several diagnostic functions were applied to investigate whether rotational melting occurred before translational melting. These functions included the coefficient of rotational diffusion D ξ ( T ), the “orientational Lindemann index” ή ξ ( T ), the “orientational angular distribution function” Q (ξ, T ), and the “orientational pair-correlation function” g ξ ( r, T ). All indicators implied that rotational melting occurred before translational melting, that it began with the outermost molecules, and that its onset for smaller clusters was at lower temperatures than for larger clusters. Results also showed that the rotational transition coincided with the transition from a lower symmetry phase (monoclinic) to cubic, a phenomenon that had been noted by others to occur with some regularity for systems of globular molecules.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43961/1/10053_2005_Article_BF01426586.pd

    Overlap Distribution of the Three-Dimensional Ising Model

    Full text link
    We study the Parisi overlap probability density P_L(q) for the three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations. At the critical point P_L(q) is peaked around q=0 in contrast with the double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution at the critical point, which we control over up to 500 orders of magnitude by using the multi-overlap MC algorithm. Below the critical temperature interface tension estimates from the overlap probability density are given and their approach to the infinite volume limit appears to be smoother than for estimates from the magnetization.Comment: 7 pages, RevTex, 9 Postscript figure

    Surface critical behavior in fixed dimensions d<4d<4: Nonanalyticity of critical surface enhancement and massive field theory approach

    Full text link
    The critical behavior of semi-infinite systems in fixed dimensions d<4d<4 is investigated theoretically. The appropriate extension of Parisi's massive field theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent Ί(d=3)\Phi (d=3), for which we obtain the values Ί(n=1)≃0.54\Phi (n=1)\simeq 0.54 and Ί(n=0)≃0.52\Phi (n=0)\simeq 0.52, considerably lower than the previous Ï”\epsilon-expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page

    Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study

    Full text link
    We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with Hausdorff dimension df≃1.8928d_f\simeq 1.8928. This method is shown to be relevant to the calculation of the critical temperature TcT_c and the magnetic eigen-exponent yhy_h on such structures. On the other hand, scaling corrections hinder the calculation of the temperature eigen-exponent yty_t. At last, the results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure

    Monte Carlo Renormalization Group Analysis of Lattice ϕ4\phi^4 Model in D=3,4D=3,4

    Full text link
    We present a simple, sophisticated method to capture renormalization group flow in Monte Carlo simulation, which provides important information of critical phenomena. We applied the method to D=3,4D=3,4 lattice ϕ4\phi^4 model and obtained renormalization flow diagram which well reproduces theoretically predicted behavior of continuum ϕ4\phi^4 model. We also show that the method can be easily applied to much more complicated models, such as frustrated spin models.Comment: 13 pages, revtex, 7 figures. v1:Submitted to PRE. v2:considerably reduced redundancy of presentation. v3:final version to appear in Phys.Rev.

    Algebraic Self-Similar Renormalization in Theory of Critical Phenomena

    Full text link
    We consider the method of self-similar renormalization for calculating critical temperatures and critical indices. A new optimized variant of the method for an effective summation of asymptotic series is suggested and illustrated by several different examples. The advantage of the method is in combining simplicity with high accuracy.Comment: 1 file, 44 pages, RevTe

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Molecular dynamics simulation of the plastic to triclinic phase transition in clusters of SF6

    No full text
    Clusters of 512 SF6 molecules in their condensed phases are simulated by molecular dynamics on the DAP computers, using a Lennard-Jones rigid-molecule model. The results are presented in the form of orientational distribution plots (dot-plots) and powder diffraction patterns. As the clusters approach melting, the outermost two molecular layers appear to melt first. Cooling the melt gives rise only to a glassy phase. However, nucleation can be identified in a cluster being cooled from the plastic phase, showing that the growth of the true crystal is initiated in the inner regions of the cluster. The crystalline clusters form generally as polycrystals, often bi-crystals, and these can be classified in terms of three different types of pseudo-twins. Attempts to anneal these clusters to give perfect single crystals failed below 100 K, and even above 100 K annealing tended to produce the more stable forms of pseudo-twin. Smaller clusters of 128 molecules readily formed perfect single crystals ; the simulation of clusters substantially larger than 512 would be computationally very demanding.Une simulation de la dynamique moléculaire a été effectuée sur des agrégats de 512 molecules de SF6 à l'aide d'un modÚle de molécules rigides interagissant selon un potentiel atome-atome de Lennard-Jones. Les calculs ont été effectués sur les ordinateurs parallÚles DAP. Les résultats sont présentés sous la forme de diagrammes de distribution d'orientations et de spectres de diffraction. A haute température, les deux couches externes des globules fondent en premier. Lorsqu'un agrégat de la phase plastique est refroidi, une transition est observée vers la phase basse température, la nucléation s'effectuant à partir du centre. Les agrégats de la phase basse température sont généralement des cristaux doubles de différents types et qui sont parfois des macles ou pseudo-macles. Un recuit de ces cristaux vers 100 K conduit à la forme la plus stable de ces pseudo-macles. Ce phénomÚne n'est pas observé dans des agrégats de taille plus petite (128 molécules), ceux-ci formant des monocristaux. La simulation de plus gros agrégats n'a pas été entreprise
    corecore