290 research outputs found

    The constant magnetic field of xi 1 CMa: geometry or slow rotation?

    Full text link
    We report recent observations of the sharp-lined magnetic beta Cep pulsator xi 1 CMa (= HD 46328). The longitudinal magnetic field of this star is detected consistently, but it is not observed to vary strongly, during nearly 5 years of observation. In this poster we evaluate whether the nearly constant longitudinal field is due to intrinsically slow rotation, or rather if the stellar or magnetic geometry is responsible

    No evidence of a strong magnetic field in the Blazhko star RR Lyrae

    No full text
    Astronomy and Astrophysics, v. 413, p. 1087-1093, 2004. http://dx.doi.org/10.1051/0004-6361%3a20031600International audienc

    Magnetism, rotation and accretion in Herbig Ae-Be stars

    Full text link
    Studies of stellar magnetism at the pre-main sequence phase can provide important new insights into the detailed physics of the late stages of star formation, and into the observed properties of main sequence stars. This is especially true at intermediate stellar masses, where magnetic fields are strong and globally organised, and therefore most amenable to direct study. This talk reviews recent high-precision ESPaDOnS observations of pre-main sequence Herbig Ae-Be stars, which are yielding qualitatively new information about intermediate-mass stars: the origin and evolution of their magnetic fields, the role of magnetic fields in generating their spectroscopic activity and in mediating accretion in their late formative stages, and the factors influencing their rotational angular momentum.Comment: 8 page

    Confirmation of ξ1 CMa's ultra-slow rotation:magnetic polarity reversal and a dramatic change in magnetospheric UV emission lines

    Get PDF
    The magnetic beta Cep pulsator xi^1 CMa has the longest rotational period of any known magnetic B-type star. It is also the only magnetic B-type star with magnetospheric emission that is known to be modulated by both rotation and pulsation. We report here the first unambiguous detection of a negative longitudinal magnetic field in xi^1 CMa (=-87 +/- 2 G in 2019 and =-207 +/- 3 G in 2020), as well as the results of ongoing monitoring of the star's Halpha variability. We examine evidence for deviation from a purely dipolar topology. We also report a new HST UV spectrum of xi^1 CMa obtained near magnetic null that is consistent with an equatorial view of the magnetosphere, as evidenced by its similarity to the UV spectrum of beta Cep obtained near maximum emission. The new UV spectrum of xi^1 CMa provides additional evidence for the extremely long rotation period of this star via comparison to archival data.Comment: 13 pages, Accepted 2021 May 14 to Monthly Notices of the Royal Astronomical Society 202
    corecore