16,610 research outputs found
Control of lasing in fully chaotic open microcavities by tailoring the shape factor
We demonstrate experimentally that lasing in a semiconductor microstadium can
be optimized by controlling its shape. Under spatially uniform optical pumping,
the first lasing mode in a GaAs microstadium with large major-to-minor-axis
ratio usually corresponds to a high-quality scar mode consisting of several
unstable periodic orbits. Interference of waves propagating along the
constituent orbits may minimize light leakage at particular major-to-minor-axis
ratio. By making stadium of the optimum shape, we are able to maximize the mode
quality factor and align the mode frequency to the peak of the gain spectrum,
thus minimizing the lasing threshold. This work opens the door to control
chaotic microcavity lasers by tailoring the shape factor
Limitations on quantum control
In this note we give an introduction to the topic of quantum control,
explaining what its objectives are, and describing some of its limitations.Comment: 6 page
Recommended from our members
Stereo and motion parallax cues in human 3D vision: can they vanish without a trace?
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the “correct” size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues
Predictions of spray combustion interactions
Mean and fluctuating phase velocities; mean particle mass flux; particle size; and mean gas-phase Reynolds stress, composition and temperature were measured in stationary, turbulent, axisymmetric, and flows which conform to the boundary layer approximations while having well-defined initial and boundary conditions in dilute particle-laden jets, nonevaporating sprays, and evaporating sprays injected into a still air environment. Three models of the processes, typical of current practice, were evaluated. The local homogeneous flow and deterministic separated flow models did not provide very satisfactory predictions over the present data base. In contrast, the stochastic separated flow model generally provided good predictions and appears to be an attractive approach for treating nonlinear interphase transport processes in turbulent flows containing particles (drops)
Structure of Evaporating and Combusting Sprays: Measurements and Predictions
Complete measurements of the structure of nonevaporating, evaporating and combusting sprays for sufficiently well defined boundary conditions to allow evaluation of models of these processes were obtained. The development of rational design methods for aircraft combustion chambers and other devices involving spray combustion were investigated. Three methods for treating the discrete phase are being considered: a locally homogeneous flow (LHF) model, a deterministic separated flow (DSF) model, and a stochastic separated flow (SSF) model. The main properties of these models are summarized
Criteria for reachability of quantum states
We address the question of which quantum states can be inter-converted under
the action of a time-dependent Hamiltonian. In particular, we consider the
problem applied to mixed states, and investigate the difference between pure
and mixed-state controllability introduced in previous work. We provide a
complete characterization of the eigenvalue spectrum for which the state is
controllable under the action of the symplectic group. We also address the
problem of which states can be prepared if the dynamical Lie group is not
sufficiently large to allow the system to be controllable.Comment: 14 pages, IoP LaTeX, first author has moved to Cambridge university
([email protected]
- …