1,454 research outputs found

    Proton structure corrections to electronic and muonic hydrogen hyperfine splitting

    Full text link
    We present a precise determination of the polarizability and other proton structure dependent contributions to the hydrogen hyperfine splitting, based heavily on the most recent published data on proton spin dependent structure functions from the EG1 experiment at the Jefferson Laboratory. As a result, the total calculated hyperfine splitting now has a standard deviation slightly under 1 part-per-million, and is about 1 standard deviation away from the measured value. We also present results for muonic hydrogen hyperfine splitting, taking care to ensure the compatibility of the recoil and polarizability terms.Comment: 9 pages, 1 figur

    High Energy Photon-Photon Collisions at a Linear Collider

    Full text link
    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an electron-electron or electron-positron linear collider. The annihilation of two photons produces C=+ final states in virtually all angular momentum states. The annihilation of polarized photons into the Higgs boson determines its fundamental two-photon coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged lepton pairs, vector boson pairs, as well as supersymmetric squark and slepton pairs and Higgstrahlung. The one-loop box diagram leads to the production of pairs of neutral particles. High energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WWW W collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. Odderon exchange can be identified by looking at the heavy quark asymmetry. In the case of electron-photon collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions test QCD at the amplitude level and measure the hadron distribution amplitudes which control exclusive semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14 December 200

    Quantum matter wave dynamics with moving mirrors

    Full text link
    When a stationary reflecting wall acting as a perfect mirror for an atomic beam with well defined incident velocity is suddenly removed, the density profile develops during the time evolution an oscillatory pattern known as diffraction in time. The interference fringes are suppressed or their visibility is diminished by several effects such as averaging over a distribution of incident velocities, apodization of the aperture function, atom-atom interactions, imperfect reflection or environmental noise. However, when the mirror moves with finite velocity along the direction of propagation of the beam, the visibility of the fringes is enhanced. For mirror velocities below beam velocity, as used for slowing down the beam, the matter wave splits into three regions separated by space-time points with classical analogues. For mirror velocities above beam velocity a visibility enhancement occurs without a classical counterpart. When the velocity of the beam approaches that of the mirror the density oscillations rise by a factor 1.8 over the stationary value.Comment: 5.2 pages, 6 figure

    Effects of spin polarization on resonant photoemission from d-f states in TbNi2Mnx compounds

    Full text link
    Resonant photoemission in narrow-band materials is described by the sum of first-and secondorder transitions, their quantum-mechanical interference leads to an increase in the spectrum from the valence bands and the appearance of an asymmetric dependence on the photon energy. These effects are studied theoretically and experimentally using the example of three-component intermetallic compounds TbNi2Mnx. The competition between the elastic and inelastic photoemission channels leads to a different dependence of photoemission spectra from nickel and manganese on photon energy. The elastic channel is realized on atoms with large magnetic moments, the inelastic Auger decay occurs on atoms with small moments. © 2018 The Authors, published by EDP Sciences.The research was carried out within the state assignment of FASO of Russia (theme uQ" ant" No. 01201463332), supported in part by RFBR (No. 18-02-00060) and UD RAS (No.15 -8 2-10). The authors express their gratitude to A. Preobrazhenskii and N. Vinogradov (synchrotron MAX-Lab, Lund, Sweden) for their assistance in carrying out experiments

    Quantitative uniqueness for elliptic equations with singular lower order terms

    Full text link
    We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.Comment: 23 pages, v2 small changes are done and some mistakes are correcte

    Magnetic and magnetocaloric properties of (MnCo)1-xGe compounds

    Full text link
    The crystal structure, magnetic properties, and heat capacity of the (MnCo)1-xGe compounds with x ≤ 0.05 have been studied. It was found that, as the deviation from the MnCoGe stoichiometric composition increases, the temperature of structural transition from the low-temperature phase with the orthorhombic TiNiSi-type structure to the high-temperature phase with the hexagonal Ni2In-type phase decreases rapidly, whereas the magnetic ordering temperature varies slightly. The temperature of structural transition for the composition with x = 0.02 approximately coincides with the Curie temperature of the hexagonal phase, and the transition is accompanied by a significant entropy change, namely, ΔS = 34 J/(kg K). The application of high magnetic field in the transition-temperature range causes an increase in the relative volume of the orthorhombic phase. An analysis of magnetocaloric properties of these compounds, which was performed with the formal application of the Maxwell's relationship near the temperature of first-order structural phase transition, is shown to give overestimated values of the entropy change. © Pleiades Publishing, Ltd., 2013

    M-Theory of Matrix Models

    Full text link
    Small M-theories unify various models of a given family in the same way as the M-theory unifies a variety of superstring models. We consider this idea in application to the family of eigenvalue matrix models: their M-theory unifies various branches of Hermitean matrix model (including Dijkgraaf-Vafa partition functions) with Kontsevich tau-function. Moreover, the corresponding duality relations look like direct analogues of instanton and meron decompositions, familiar from Yang-Mills theory.Comment: 12 pages, contribution to the Proceedings of the Workshop "Classical and Quantum Integrable Systems", Protvino, Russia, January, 200

    Search for NN-decoupled dibaryons using the process ppγγXpp \to \gamma \gamma X below the pion production threshold

    Full text link
    The energy spectrum for high energy γ\gamma-rays (Eγ10E_\gamma \geq 10 MeV) from the process ppγγXpp \to \gamma \gamma X emitted at 90090^0 in the laboratory frame has been measured at an energy below the pion production threshold, namely, at 216 MeV. The resulting photon energy spectrum extracted from γγ\gamma-\gamma coincidence events consists of a narrow peak at a photon energy of about 24 MeV and a relatively broad peak in the energy range of (50 - 70) MeV. The statistical significances for the narrow and broad peaks are 5.3σ\sigma and 3.5σ\sigma, respectively. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d1d^\star_1 with a mass of about 1956 MeV which is assumed to be formed in the radiative process ppγd1pp \to \gamma d^\star_1 followed by its electromagnetic decay via the d1ppγd^\star_1 \to pp \gamma mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations.Comment: 14 pages, LaTex, 6 eps-figures, accepted for publication in Phys.Rev.

    Partition Functions of Matrix Models as the First Special Functions of String Theory I. Finite Size Hermitean 1-Matrix Model

    Full text link
    Even though matrix model partition functions do not exhaust the entire set of tau-functions relevant for string theory, they seem to be elementary building blocks for many others and they seem to properly capture the fundamental symplicial nature of quantum gravity and string theory. We propose to consider matrix model partition functions as new special functions. This means they should be investigated and put into some standard form, with no reference to particular applications. At the same time, the tables and lists of properties should be full enough to avoid discoveries of unexpected peculiarities in new applications. This is a big job, and the present paper is just a step in this direction. Here we restrict our consideration to the finite-size Hermitean 1-matrix model and concentrate mostly on its phase/branch structure arising when the partition function is considered as a D-module. We discuss the role of the CIV-DV prepotential (as generating a possible basis in the linear space of solutions to the Virasoro constraints, but with a lack of understanding of why and how this basis is distinguished) and evaluate first few multiloop correlators, which generalize semicircular distribution to the case of multitrace and non-planar correlators.Comment: 64 pages, LaTe
    corecore