10,330 research outputs found
Charge order in Magnetite. An LDA+ study
The electronic structure of the monoclinic structure of FeO is
studied using both the local density approximation (LDA) and the LDA+. The
LDA gives only a small charge disproportionation, thus excluding that the
structural distortion should be sufficient to give a charge order. The LDA+
results in a charge disproportion along the c-axis in good agreement with the
experiment. We also show how the effective can be calculated within the
augmented plane wave methods
Bayesian analysis of the linear reaction norm model with unknown covariate
The reaction norm model is becoming a popular approach for the analysis of G x E interactions. In a classical reaction norm model, the expression of a genotype in different environments is described as a linear function (a reaction norm) of an environmental gradient or value. A common environmental value is defined as the mean performance of all genotypes in the environment, which is typically unknown. One approximation is to estimate the mean phenotypic performance in each environment, and then treat these estimates as known covariates in the model. However, a more satisfactory alternative is to infer environmental values simultaneously with the other parameters of the model. This study describes a method and its Bayesian MCMC implementation that makes this possible. Frequentist properties of the proposed method are tested in a simulation study. Estimates of parameters of interest agree well with the true values. Further, inferences about genetic parameters from the proposed method are similar to those derived from a reaction norm model using true environmental values. On the other hand, using phenotypic means as proxies for environmental values results in poor inferences
A Cosmological Three Level Neutrino Laser
We present a calculation of a neutrino decay scenario in the early Universe.
The specific decay is \nu_{2} \to \nu_{1} + \phi, where \phi is a boson. If
there is a neutrino mass hierarchy, m_{\nu_{e}} < m_{\nu_{\mu}} <
m_{\nu_{\tau}}, we show that it is possible to generate stimulated decay and
effects similar to atomic lasing without invoking new neutrinos, even starting
from identical neutrino distributions. Under the right circumstances the decay
can be to very low momentum boson states thereby producing something similar to
a Bose condensate, with possible consequences for structure formation. Finally,
we argue that this type of decay may also be important other places in early
Universe physics.Comment: 7 pages, RevTex, due for publication in Phys. Rev. D, April 15 issu
Characteristic value determination from small samples
The paper deals with the characteristic value determination from relatively small samples. When the distribution and its parameters of a random variable are known, the characteristic value is deterministic quantity. However, in practical problems the parameters of distribution are unknown and can only be estimated from random samples. Therefore the characteristic value is by itself a random variable. The estimates of characteristic values are strongly dependant on the distribution of random variable. In the paper we show the analytical solution for characteristic value determination from random samples of normal and lognormal random variables. The confirmation of analytical results is accomplished by the use of computer simulations. For Gumbel, and Weibull distribution the characteristic value estimates are obtained numerically by combination of simulations and bisection method. In the paper the numerical results are presented for 5% characteristic values with 75% confidence interval, which is in accord with the majority of European building standards. The proposed approach is demonstrated on the data of experimentally obtained bending strengths of finger jointed wooden beams. (C) 2006 Elsevier Ltd. All rights reserved
Colour-singlet strangelets at finite temperature
Considering massless and quarks, and massive (150 MeV) quarks in
a bag with the bag pressure constant MeV, a colour-singlet
grand canonical partition function is constructed for temperatures
MeV. Then the stability of finite size strangelets is studied minimizing the
free energy as a function of the radius of the bag. The colour-singlet
restriction has several profound effects when compared to colour unprojected
case: (1) Now bulk energy per baryon is increased by about MeV making the
strange quark matter unbound. (2) The shell structures are more pronounced
(deeper). (3) Positions of the shell closure are shifted to lower -values,
the first deepest one occuring at , famous -particle ! (4) The shell
structure at vanishes only at MeV, though for higher
-values it happens so at MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from
first Autho
- …