3,453 research outputs found

    Geometrical, electronic and magnetic properties of Na0.5_{0.5}CoO2_2 from first principles

    Full text link
    We report a first-principles projector augmented wave (PAW) study on Na0.5_{0.5}CoO2_2. With the sodium ion ordered insulating phase being identified in experiments, pure density functional calculations fail to predict an insulating ground state, which indicates that Na ordering alone can not produce accompanying Co charge ordering, if additional correlation is not properly considered. At this level of theory, the most stable phase presents ferromagnetic ordering within the CoO2_2 layer and antiferromagnetic coupling between these layers. When the on-site Coulomb interaction for Co 3d orbitals is included by an additional Hubbard parameter UU, charge ordered insulating ground state can be obtained. The effect of on-site interaction magnitude on electronic structure is studied. At a moderate value of UU (4.0 eV for example), the ground state is antiferromagnetic, with a Co4+^{4+} magnetic moment about 1.0 μB\mu_B and a magnetic energy of 0.12 eV/Co. The rehybridization process is also studied in the DFT+U point of view.Comment: 21 pages, 7 figure

    XMM-Newton observation of the ULIRG NGC 6240: The physical nature of the complex Fe K line emission

    Full text link
    We report on an XMM-Newton observation of the ultraluminous infrared galaxy NGC 6240. The 0.3-10 keV spectrum can be successfully modelled with: (i) three collisionally ionized plasma components with temperatures of about 0.7, 1.4, and 5.5 keV; (ii) a highly absorbed direct power-law component; and (iii) a neutral Fe K_alpha and K_beta line. We detect a significant neutral column density gradient which is correlated with the temperature of the three plasma components. Combining the XMM-Newton spectral model with the high spatial resolution Chandra image we find that the temperatures and the column densities increase towards the center. With high significance, the Fe K line complex is resolved into three distinct narrow lines: (i) the neutral Fe K_alpha line at 6.4 keV; (ii) an ionized line at about 6.7 keV; and (iii) a higher ionized line at 7.0 keV (a blend of the Fe XXVI and the Fe K_beta line). While the neutral Fe K line is most probably due to reflection from optically thick material, the Fe XXV and Fe XXVI emission arises from the highest temperature ionized plasma component. We have compared the plasma parameters of the ultraluminous infrared galaxy NGC 6240 with those found in the local starburst galaxy NGC 253. We find a striking similarity in the plasma temperatures and column density gradients, suggesting a similar underlying physical process at work in both galaxies.Comment: 8 pages including 9 figures. Accepted for publication in A&

    Magnetoelectric effects in heavy-fermion superconductors without inversion symmetry

    Get PDF
    We investigate effects of strong electron correlation on magnetoelectric transport phenomena in noncentrosymmetric superconductors with particular emphasis on its application to the recently discovered heavy-fermion superconductor CePt3_3Si. Taking into account electron correlation effects in a formally exact way, we obtain the expression of the magnetoelectric coefficient for the Zeeman-field-induced paramagnetic supercurrent, of which the existence was predicted more than a decade ago. It is found that in contrast to the usual Meissner current, which is much reduced by the mass renormalization factor in the heavy-fermion state, the paramagnetic supercurrent is not affected by the Fermi liquid effect. This result implies that the experimental observation of the magnetoelectric effect is more feasible in heavy-fermion systems than that in conventional metals with moderate effective mass.Comment: 8 pages, 2 figures, minor correction

    The Evolution of Protoplanetary Disks Around Millisecond Pulsars: The PSR 1257 +12 System

    Full text link
    We model the evolution of protoplanetary disks surrounding millisecond pulsars, using PSR 1257+12 as a test case. Initial conditions were chosen to correspond to initial angular momenta expected for supernova-fallback disks and disks formed from the tidal disruption of a companion star. Models were run under two models for the viscous evolution of disks: fully viscous and layered accretion disk models. Supernova-fallback disks result in a distribution of solids confined to within 1-2 AU and produce the requisite material to form the three known planets surrounding PSR 1257+12. Tidal disruption disks tend to slightly underproduce solids interior to 1 AU, required for forming the pulsar planets, while overproducing the amount of solids where no body, lunar mass or greater, exists. Disks evolving under 'layered' accretion spread somewhat less and deposit a higher column density of solids into the disk. In all cases, circumpulsar gas dissipates on 105\lesssim 10^{5} year timescales, making formation of gas giant planets highly unlikely.Comment: 16 pages, 17 figures, Accepted for publication in The Astrophysical Journal (September 20, 2007 issue

    Disc-Jet coupling in the LMXB 4U1636-53 from INTEGRAL

    Get PDF
    We report on the spectral analysis results of the neutron star, atoll type, low mass X-ray Binary 4U1636-53 observed by INTEGRAL and BeppoSAX satellites. Spectral behavior in three different epochs corresponding to three different spectral states has been deeply investigated. Two data set spectra show a continuum well described by one or two soft blackbody plus a Comptonized components with changes in the Comptonizing electrons and black body temperature and the accretion rates, which are typical of the spectral transitions from high to low state. In one occasion INTEGRAL spectrum shows, for first time in this source, a hard tail dominating the emission above 30 keV. The total spectrum is fitted as the sum of a Comptonized component similar to soft state and a power-law component (Gamma=2.76), indicating the presence of a non thermal electron distribution of velocities. In this case, a comparison with hard tails detected in soft states from neutron stars systems and some black hole binaries suggests that a similar mechanism could originate these components in both cases.Comment: 6 pages, 4 figures, 2 tables. accepted Ap

    Kondo Problem and Related One-Dimensional Quantum Systems: Bethe Ansatz Solution and Boundary Conformal Field Theory

    Full text link
    We review some exact results on Kondo impurity systems derived from Bethe-ansatz solutions and boundary conformal field theory with particular emphasis on universal aspects of the phenomenon. The finite-size spectra characterizing the low-energy fixed point are computed from the Bethe-ansatz solutions of various models related to the Kondo problem. Using the finite-size scaling argument, we investigate their exact critical properties. We also discuss that a universal relation between the Kondo effect and the impurity effect in one-dimensional quantum systems usefully expedites our understanding of these different phenomena.Comment: 6 pages, no figure

    Testing the Collective Properties of Small-World Networks through Roughness Scaling

    Full text link
    Motivated by a fundamental synchronization problem in scalable parallel computing and by a recent criterion for ``mean-field'' synchronizability in interacting systems, we study the Edwards-Wilkinson model on two variations of a small-worldnetwork. In the first version each site has exactly one random link of strength pp, while in the second one each site on average has pp links of unit strength. We construct a perturbative description for the width of the stationary-state surface (a measure of synchronization), in the weak- and sparse-coupling limits, respectively, and verify the results by performing exact numerical diagonalization. The width remains finite in both cases, but exhibits anomalous scaling with pp in the latter for d2d\leq 2.Comment: 4 pages, 3 figure

    Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds

    Full text link
    The evolution of a gas shell, swept by the supernova remnant of a massive first generation star, is studied with H_2 and HD chemistry taken into account. When a first-generation star explodes as a supernova, H_2 and HD molecules are formed in the swept gas shell and effectively cool the gas shell to temperatures of 32 K - 154 K. If the supernova remnant can sweep to gather the ambient gas, the gas shell comes to be dominated by its self-gravity, and hence, is expected to fragment. Our result shows that for a reasonable range of temperatures (200 K - 1000 K) of interstellar gas, the formation of second-generation stars can be triggered by a single supernova or hypernova.Comment: 38pages, 10 figures, The Astrophysical Journal, accepted 8 Dec. 200
    corecore