450 research outputs found

    Partially massless fields during inflation

    Get PDF
    The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation

    DBI Galileon and Late time acceleration of the universe

    Full text link
    We consider 1+3 dimensional maximally symmetric Minkowski brane embedded in a 1+4 dimensional maximally symmetric Minkowski background. The resulting 1+3 dimensional effective field theory is of DBI (Dirac-Born-Infeld) Galileon type. We use this model to study the late time acceleration of the universe. We study the deviation of the model from the concordance \Lambda CDM behaviour. Finally we put constraints on the model parameters using various observational data.Comment: 16 pages, 7 eps figures, Latex Style, new references added, corrected missing reference

    Quantum corrections to generic branes: DBI, NLSM, and more

    Get PDF
    We study quantum corrections to hypersurfaces of dimension d+1>2d+1>2 embedded in generic higher-dimensional spacetimes. Manifest covariance is maintained throughout the analysis and our methods are valid for arbitrary co-dimension and arbitrary bulk metric. A variety of theories which are prominent in the modern amplitude literature arise as special limits: the scalar sector of Dirac-Born-Infeld theories and their multi-field variants, as well as generic non-linear sigma models and extensions thereof. Our explicit one-loop results unite the leading corrections of all such models under a single umbrella. In contrast to naive computations which generate effective actions that appear to violate the non-linear symmetries of their classical counterparts, our efficient methods maintain manifest covariance at all stages and make the symmetry properties of the quantum action clear. We provide an explicit comparison between our compact construction and other approaches and demonstrate the ultimate physical equivalence between the superficially different results

    Galileons as Wess-Zumino Terms

    Full text link
    We show that the galileons can be thought of as Wess-Zumino terms for the spontaneous breaking of space-time symmetries. Wess-Zumino terms are terms which are not captured by the coset construction for phenomenological Lagrangians with broken symmetries. Rather they are, in d space-time dimensions, d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to the unbroken symmetry group. We introduce the galileon algebras and construct the non-trivial (d+1)-form co-cycles, showing that the presence of galileons and multi-galileons in all dimensions is counted by the dimensions of particular Lie algebra cohomology groups. We also discuss the DBI and conformal galileons from this point of view, showing that they are not Wess-Zumino terms, with one exception in each case.Comment: 49 pages. v2 minor changes, version appearing in JHE

    SELDI-TOF-MS determination of hepcidin in clinical samples using stable isotope labelled hepcidin as an internal standard

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepcidin is a 25-residue peptide hormone crucial to iron homeostasis. It is essential to measure the concentration of hepcidin in cells, tissues and body fluids to understand its mechanisms and roles in physiology and pathophysiology. With a mass of 2791 Da hepcidin is readily detectable by mass spectrometry and LC-ESI, MALDI and SELDI have been used to estimate systemic hepcidin concentrations by analysing serum or urine. However, peak heights in mass spectra may not always reflect concentrations in samples due to competition during binding steps and variations in ionisation efficiency. Thus the purpose of this study was to develop a robust assay for measuring hepcidin using a stable isotope labelled hepcidin spiking approach in conjunction with SELDI-TOF-MS.</p> <p>Results</p> <p>We synthesised and re-folded hepcidin labelled with <sup>13</sup>C/<sup>15</sup>N phenylalanine at position 9 to generate an internal standard for mass spectrometry experiments. This labelled hepcidin is 10 Daltons heavier than the endogenous peptides and does not overlap with the isotopic envelope of the endogenous hepcidin or other common peaks in human serum or urine mass spectra and can be distinguished in low resolution mass spectrometers. We report the validation of adding labelled hepcidin into serum followed by SELDI analysis to generate an improved assay for hepcidin.</p> <p>Conclusion</p> <p>We demonstrate that without utilising a spiking approach the hepcidin peak height in SELDI spectra gives a good indication of hepcidin concentration. However, a stable isotope labelled hepcidin spiking approach provides a more robust assay, measures the absolute concentration of hepcidin and should facilitate inter-laboratory hepcidin comparisons.</p

    Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity

    Full text link
    We derive the decoupling limit of Massive Gravity on de Sitter in an arbitrary number of space-time dimensions d. By embedding d-dimensional de Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and helicity-0 polarizations of the graviton. The resulting decoupling theory is similar to that obtained around Minkowski. We take great care at exploring the partially massless limit and define the unique fully non-linear candidate theory that is free of the helicity-0 mode in the decoupling limit, and which therefore propagates only four degrees of freedom in four dimensions. In the latter situation, we show that a new Vainshtein mechanism is at work in the limit m^2\to 2 H^2 which decouples the helicity-0 mode when the parameters are different from that of partially massless gravity. As a result, there is no discontinuity between massive gravity and its partially massless limit, just in the same way as there is no discontinuity in the massless limit of massive gravity. The usual bounds on the graviton mass could therefore equivalently well be interpreted as bounds on m^2-2H^2. When dealing with the exact partially massless parameters, on the other hand, the symmetry at m^2=2H^2 imposes a specific constraint on matter. As a result the helicity-0 mode decouples without even the need of any Vainshtein mechanism.Comment: 30 pages. Some clarifications and references added. New subsection 'Symmetry and Counting in the Full Theory' added. New appendix 'St\"uckelberg fields in the Na\"ive approach' added. Matches version published in JCA

    de Sitter Galileon

    Full text link
    We generalize the Galileon symmetry and its relativistic extension to a de Sitter background. This is made possible by studying a probe-brane in a flat five-dimensional bulk using a de Sitter slicing. The generalized Lovelock invariants induced on the probe brane enjoy the induced Poincar\'e symmetry inherited from the bulk, while living on a de Sitter geometry. The non-relativistic limit of these invariants naturally maintain a generalized Galileon symmetry around de Sitter while being free of ghost-like pathologies. We comment briefly on the cosmology of these models and the extension to the AdS symmetry as well as generic FRW backgrounds

    Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models

    Full text link
    In the Horndeski's most general scalar-tensor theories with second-order field equations, we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar, tensor, and vector perturbations in the presence of two perfect fluids on the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background. Our general results are useful for the construction of theoretically consistent models of dark energy. We apply our formulas to extended Galileon models in which a tracker solution with an equation of state smaller than -1 is present. We clarify the allowed parameter space in which the ghosts and Laplacian instabilities are absent and we numerically confirm that such models are indeed cosmologically viable.Comment: 18 pages, 6 figure

    Generalizing Galileons

    Full text link
    The Galileons are a set of terms within four-dimensional effective field theories, obeying symmetries that can be derived from the dynamics of a 3+1-dimensional flat brane embedded in a 5-dimensional Minkowski Bulk. These theories have some intriguing properties, including freedom from ghosts and a non-renormalization theorem that hints at possible applications in both particle physics and cosmology. In this brief review article, we will summarize our attempts over the last year to extend the Galileon idea in two important ways. We will discuss the effective field theory construction arising from co-dimension greater than one flat branes embedded in a flat background - the multiGalileons - and we will then describe symmetric covariant versions of the Galileons, more suitable for general cosmological applications. While all these Galileons can be thought of as interesting four-dimensional field theories in their own rights, the work described here may also make it easier to embed them into string theory, with its multiple extra dimensions and more general gravitational backgrounds.Comment: 16 pages; invited brief review article for a special issue of Classical and Quantum Gravity. Submitted to CQ
    • …
    corecore