168 research outputs found

    Vortex annihilation in the ordering kinetics of the O(2) model

    Full text link
    The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensional O(2) model undergoing phase ordering. We find reasonably good agreement with simulation results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with simulation results for intermediate and long-scaled distances. At short-scaled distances the simulations show a depletion zone not seen in the theory.Comment: 28 pages, REVTeX, submitted to Phys. Rev.

    Perturbation Expansion in Phase-Ordering Kinetics: II. N-vector Model

    Full text link
    The perturbation theory expansion presented earlier to describe the phase-ordering kinetics in the case of a nonconserved scalar order parameter is generalized to the case of the nn-vector model. At lowest order in this expansion, as in the scalar case, one obtains the theory due to Ohta, Jasnow and Kawasaki (OJK). The second-order corrections for the nonequilibrium exponents are worked out explicitly in dd dimensions and as a function of the number of components nn of the order parameter. In the formulation developed here the corrections to the OJK results are found to go to zero in the large nn and dd limits. Indeed, the large-dd convergence is exponential.Comment: 20 pages, no figure

    Fluctuations and defect-defect correlations in the ordering kinetics of the O(2) model

    Full text link
    The theory of phase ordering kinetics for the O(2) model using the gaussian auxiliary field approach is reexamined from two points of view. The effects of fluctuations about the ordering field are included and we organize the theory such that the auxiliary field correlation function is analytic in the short-scaled distance (x) expansion. These two points are connected and we find in the refined theory that the divergence at the origin in the defect-defect correlation function g~(x)\tilde{g}(x) obtained in the original theory is removed. Modifications to the order-parameter autocorrelation exponent λ\lambda are computed.Comment: 29 pages, REVTeX, to be published in Phys. Rev. E. Minor grammatical/syntax changes from the origina

    Vortex Velocity Pair Correlations

    Full text link
    The vortex velocity probability distribution for two distinct vortices is determined for the case of phase-ordering kinetics in systems with point defects. The n-vector model driven by time-dependent Ginzburg-Landau dynamics for a nonconserved order parameter is considered. The description includes the effects of other vortices and order parameter fluctuations. At short distances the most probable configuration is that a vortex-antivortex pair have only a nonzero relative velocity which is inversely proportional to the distance between them. The coefficient of proportionality is determined explicitly.Comment: 51 pages, 4 figure

    Spinodal Decomposition and the Tomita Sum Rule

    Full text link
    The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The theory also gives good agreement with numerical results for the order parameter scaling function in three dimensions. The values of the associated nonequilibrium decay exponents are given by the known lower bounds.Comment: 15 pages, 6 figure

    Perturbative Corrections to the Ohta-Jasnow-Kawasaki Theory of Phase-Ordering Dynamics

    Full text link
    A perturbation expansion is considered about the Ohta-Jasnow-Kawasaki theory of phase-ordering dynamics; the non-linear terms neglected in the OJK calculation are reinstated and treated as a perturbation to the linearised equation. The first order correction term to the pair correlation function is calculated in the large-d limit and found to be of order 1/(d^2).Comment: Revtex, 27 pages including 2 figures, submitted to Phys. Rev. E, references adde

    Condensation vs. phase-ordering in the dynamics of first order transitions

    Full text link
    The origin of the non commutativity of the limits t→∞t \to \infty and N→∞N \to \infty in the dynamics of first order transitions is investigated. In the large-N model, i.e. N→∞N \to \infty taken first, the low temperature phase is characterized by condensation of the large wave length fluctuations rather than by genuine phase-ordering as when t→∞t \to \infty is taken first. A detailed study of the scaling properties of the structure factor in the large-N model is carried out for quenches above, at and below T_c. Preasymptotic scaling is found and crossover phenomena are related to the existence of components in the order parameter with different scaling properties. Implications for phase-ordering in realistic systems are discussed.Comment: 15 pages, 13 figures. To be published in Phys. Rev.

    Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results

    Full text link
    We consider the pair correlation functions of both the order parameter field and its square for phase ordering in the O(n)O(n) model with nonconserved order parameter, in spatial dimension 2≤d≤32\le d\le 3 and spin dimension 1≤n≤d1\le n\le d. We calculate, in the scaling limit, the exact short-distance singularities of these correlation functions and compare these predictions to numerical simulations. Our results suggest that the scaling hypothesis does not hold for the d=2d=2 O(2)O(2) model. Figures (23) are available on request - email [email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2
    • …
    corecore