3 research outputs found

    Network representation of electromagnetic fields and forces using generalized bond graphs

    Get PDF
    We show that it is possible to describe electromagnetic (E-M) fields with a generalized network representation (generalized bond graphs). E-M fields inmoving matter, forces due to E-M fields (Lorentz force, ets.) and field transformations are included in the network description. The relations of these E-M phenomena with respect to each other are clearly represented by the bond graph. We also show that it is not possible to describe E-M phenomena in moving matter with conventional bond graphs, but that a generalized bond graph concept is required.\ud \ud The description of simple E-M devices with conventional bond graphs is based on rather drastic assumptions, i.e. quasi-static conditions (E-M radiation neglected), homogeneous fields, isotropic linear material, etc. These assumptions are not made in this paper

    Liposome induction of CD8+ T cell responses depends on CD169+ macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion

    Get PDF
    Cancer vaccines aim to efficiently prime cytotoxic CD8+ T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169+ macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169+ macrophages and to induce immune responses. CD169+ macrophages demonstrated specific uptake of GM3 liposomes in vitro and in vivo that was dependent on a functional CD169 receptor. Robust antigen-specific CD8+ and CD4+ T and B cell responses were observed upon intravenous administration of GM3 liposomes containing the model antigen ovalbumin in the presence of adjuvant. Immunization of B16-OVA tumor bearing mice with all liposomes resulted in delayed tumor growth and improved survival. The absence of CD169+ macrophages, functional CD169 molecules, and cross-presenting Batf3-dependent dendritic cells (cDC1s) significantly impaired CD8+ T cell responses, while B cell responses were less affected. In conclusion, we demonstrate that inclusion of GM3 in liposomes enhance immune responses and that splenic CD169+ macrophages and cDC1s are required for induction of CD8+ T cell immunity after liposomal vaccination

    Liposome induction of CD8+ T cell responses depends on CD169+ macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion

    Get PDF
    Cancer vaccines aim to efficiently prime cytotoxic CD8+ T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169+ macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169+ macrophages and to induce immune responses. CD169+ macrophages demonstrated specific uptake of GM3 liposomes in vitro and in vivo that was dependent on a functional CD169 receptor. Robust antigen-specific CD8+ and CD4+ T and B cell responses were observed upon intravenous administration of GM3 liposomes containing the model antigen ovalbumin in the presence of adjuvant. Immunization of B16-OVA tumor bearing mice with all liposomes resulted in delayed tumor growth and improved survival. The absence of CD169+ macrophages, functional CD169 molecules, and cross-presenting Batf3-dependent dendritic cells (cDC1s) significantly impaired CD8+ T cell responses, while B cell responses were less affected. In conclusion, we demonstrate that inclusion of GM3 in liposomes enhance immune responses and that splenic CD169+ macrophages and cDC1s are required for induction of CD8+ T cell immunity after liposomal vaccination
    corecore