35 research outputs found

    Indirect basal metabolism estimation in tailoring recombinant human TSH administration in patients affected by differentiated thyroid cancer: A hypothesis-generating study

    Get PDF
    Purpose: Recombinant human TSH (rhTSH) is currently used in follow-up of patients affected by differentiated thyroid cancer (DTC). Age, sex, weight, body mass index, body surface area (BSA) and renal function are known factors affecting serum TSH peak levels, but the proper rhTSH dose to deliver to single patient remains elusive. In this study, the correlations of basal metabolic rates with serum TSH peak following rhTSH administration were investigated.Methods: We evaluated 221 patients affected by thyroid cancer that received a standard dose rhTSH. Blood samples were collected at pre-established time points. Data on body weight, height, and BSA were collected. The Mifflin-St Jeor and Fleisch equations were used to assess basal metabolism.Results: The median value (range) of serum TSH peaks was 142 +/- 53 mu U/ml. Serum TSH peaks were significantly lower in males than in females (p = 0.04). TSH values also increased with age. Data showed a significant decrease of TSH peak levels at day 3 from the administration of rhTSH when basal metabolic rates increased (p = 0.002 and p = 0.009, respectively). Similar findings were observed at day 5 (p = 0.004 and p = 0.04, respectively). A multivariate analysis of several factors revealed that patients' basal metabolism (obtained using the Mifflin-St Jeor but not Fleisch equation) predicts serum TSH level peak at day 3 (p < 0.001). These results were used to generate a new formula based on Mifflin-StJeor equation which reveals as a promising tool in tailoring rhTSH dose.Conclusion: Basal metabolism appears an improving factor in tailoring diagnostic rhTSH dose in patients affected by DTC

    Serum free light chain quantitative assays: Dilemma of a biomarker

    Get PDF
    Background: Serum free light chains detection assays are consistently meeting greater interest for the diagnosis and monitoring of monoclonal gammopathies and plasma cell dyscrasias. Nowadays, there are neither standardized methods nor reference material for the determination of free light chains; for this reason, it is important to compare two different assays used in clinical laboratory. Methods: We evaluated 300 serum samples from patients with B-cell disorders and compared the analytical performances of both assay. Each test was assayed on both testing platforms (Siemens Dade Behring BN II Nephelometer and SPAPLUS by The Binding Site). κ/λ ratios were determined and compared. Results were analyzed by Passing-Bablok and Bland-Altman plots to evaluate comparability of the two techniques and to determine bias. Results: The reproducibility of both assays is acceptable, reaching minimum and desirable analytical goals derived from biological variability. However, values are not interchangeable between systems. This study shows that the two systems do not allow results to be transferred from one method to the other even if they display good agreement. Conclusion: Our study highlights the importance of elaborating an international standard for free light chains quantification in order to offer homogeneous results as well as guarantee harmonization of values among laboratories. Moreover, the assays should be validated in specific patient groups to determine that they are clinically fit for purpose

    Applying multivariate statistics to discriminate uranium ore concentrate geolocations using (radio)chemical data in support of nuclear forensic investigations

    No full text
    The application of Principal Components Analysis (PCA) to U and Th series gamma spectrometry data provides a discriminatory tool to help determine the provenance of illicitly recovered uranium ore concentrates (UOCs). The PCA is applied to a database of radiometric signatures from 19 historic UOCs from Australia, Canada, and the USA representing many uranium geological deposits. In this study a key process to obtain accurate radiometric data (gamma and alpha) is to digest the U-ores and UOCs using a lithium tetraborate fusion. Six UOCs from the same sample set were analysed ‘blind’ and compared against the database to identify their geolocation. These UOCs were all accurately linked to their correct geolocations which can aid the forensic laboratory in determining which further analytical techniques should be used to improve the confidence of the particular location
    corecore