356 research outputs found
UC-156 Total Health Telemedicine Application
The Total Health Web Portal is a telemedicine application that allows users to orchestrate the process of a hospital visit without requiring anyone to leave their homes. The app assigns each user to 1 of 3 roles: client, doctor, or administrator. Clients are able to request appointments, upload documents, message their doctor, and join video calls for their appointments. The doctor may also message their clients and join video calls for their scheduled appointments. In addition, they may search through a list of their patients and dynamically add notes for each patient. Finally, the administrators have the responsibility of accepting/declining incoming appointment requests and managing accounts from within the database. The goal of the Total Health Telemedicine Application is to provide all participants with a way to effectively communicate and work in a single, convenient, and secure web portal
Big data managing in a landslide early warning system: Experience from a ground-based interferometric radar application
A big challenge in terms or landslide risk mitigation is represented by
increasing the resiliency of society exposed to the risk. Among the
possible strategies with which to reach this goal, there is the implementation of
early warning systems. This paper describes a procedure to improve early warning
activities in areas affected by high landslide risk, such as those
classified as critical infrastructures for their central role in society.
This research is part of the project LEWIS (Landslides Early Warning
Integrated System): An Integrated System for Landslide Monitoring, Early
Warning and Risk Mitigation along Lifelines.
LEWIS is composed of a susceptibility assessment methodology providing
information for single points and areal monitoring systems, a data
transmission network and a data collecting and processing center (DCPC),
where readings from all monitoring systems and mathematical models converge
and which sets the basis for warning and intervention activities.
The aim of this paper is to show how logistic issues linked to advanced
monitoring techniques, such as big data transfer and storing, can be dealt
with compatibly with an early warning system. Therefore, we focus on the
interaction between an areal monitoring tool (a ground-based interferometric
radar) and the DCPC. By converting complex data into ASCII strings and
through appropriate data cropping and average, and by implementing an
algorithm for line-of-sight correction, we managed to reduce the data daily
output without compromising the capability for performing
The Staphylococcus aureus Peptidoglycan Protects Mice against the Pathogen and Eradicates Experimentally Induced Infection
Staphylococcus aureus, in spite of antibiotics, is still a major human pathogen causing a wide range of infections. The present study describes the new vaccine A170PG, a peptidoglycan-based vaccine. In a mouse model of infection, A170PG protects mice against a lethal dose of S. aureus. Protection lasts at least 40 weeks and correlates with increased survival and reduced colonization. Protection extends into drug-resistant (MRSA or VISA) and genetically diverse clinical strains. The vaccine is effective when administered - in a single dose and without adjuvant - by the intramuscular, intravenous or the aerosol routes and induces active as well as passive immunization. Of note, A170PG also displays therapeutic activity, eradicating staphylococci, even when infection is systemic. Sustained antibacterial activity and induction of a strong and rapid anti-inflammatory response are the mechanisms conferring therapeutic efficacy to A170PG
Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas campestris pv. campestris Infection
Periodic epidemics of black rot disease occur worldwide causing substantial yield losses. Xanthomonas campestris pv. campestris (Xcc) represents one of the most common bacteria able to cause the above disease in cruciferous plants such as broccoli, cabbage, cauliflower, and Arabidopsis thaliana. In agriculture, several strategies are being developed to contain the Xanthomonas infection. The use of bacteriophages could represent a valid and efficient approach to overcome this widespread phenomenon. Several studies have highlighted the potential usefulness of implementing phage therapy to control plant diseases as well as Xcc infection. In the present study, we characterized the effect of a lytic phage on the plant Brassica oleracea var. gongylodes infected with Xcc and, for the first time, the correlated plant metabolic response. The results highlighted the potential benefits of bacteriophages: reduction of bacterium proliferation, alteration of the biofilm structure and/or modulation of the plant metabolism and defense response
CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth
Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF-ÎČ signaling, with increased transcription of TGF-ÎČ target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it remains unknown if activation of the TGF-ÎČ / CTGF pathway regulates the metabolism of cancer-associated fibroblasts. Therefore, we investigated whether CTGF modulates metabolism in the tumor microenvironment. For this purpose, CTGF was overexpressed in normal human fibroblasts or MDA-MB-231 breast cancer cells. Overexpression of CTGF induces HIF-1α-dependent metabolic alterations, with the induction of autophagy/mitophagy, senescence, and glycolysis. Here, we show that CTGF exerts compartment-specific effects on tumorigenesis, depending on the cell-type. In a xenograft model, CTGF overexpressing fibroblasts promote the growth of co-injected MDA-MB-231 cells, without any increases in angiogenesis. Conversely, CTGF overexpression in MDA-MB-231 cells dramatically inhibits tumor growth in mice. Intriguingly, increased extracellular matrix deposition was seen in tumors with either fibroblast or MDA-MB-231 overexpression of CTGF. Thus, the effects of CTGF expression on tumor formation are independent of its extracellular matrix function, but rather depend on its ability to activate catabolic metabolism. As such, CTGF-mediated induction of autophagy in fibroblasts supports tumor growth via the generation of recycled nutrients, whereas CTGF-mediated autophagy in breast cancer cells suppresses tumor growth, via tumor cell self-digestion. Our studies shed new light on the compartment-specific role of CTGF in mammary tumorigenesis, and provide novel insights into the mechanism(s) generating a lethal tumor microenvironment in patients lacking stromal Cav-1. As loss of Cav-1 is a stromal marker of poor clinical outcome in women with primary breast cancer, dissecting the downstream signaling effects of Cav-1 are important for understanding disease pathogenesis, and identifying novel therapeutic targets
Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation
Extracellular DNA (exDNA) can be actively released by living cells and different putative functions have been attributed to it. Further, homolo-gous exDNA has been reported to exert species-specific inhibitory effects on several organisms. Here, we demonstrate by different experimental evidence, including 1H-NMR metabolomic fingerprint, that the growth rate decline in Saccharomyces cerevisiae fed-batch cultures is determined by the accumula-tion of exDNA in the medium. Sequencing of such secreted exDNA represents a portion of the entire genome, showing a great similarity with extrachromo-somal circular DNA (eccDNA) already reported inside yeast cells. The recov-ered DNA molecules were mostly single strands and specifically associated to the yeast metabolism displayed during cell growth. Flow cytometric analysis showed that the observed growth inhibition by exDNA corresponded to an arrest in the S phase of the cell cycle. These unprecedented findings open a new scenario on the functional role of exDNA produced by living cells
- âŠ