278,562 research outputs found
Microscopic Calculation of in-Medium Proton-Proton Cross Sections
We derive in-medium PROTON-PROTON cross sections in a microscopic model based
upon the Bonn nucleon-nucleon potential and the Dirac-Brueckner approach for
nuclear matter. We demonstrate the difference between proton-proton and
neutron-proton cross sections and point out the need to distinguish carefully
between the two cases. We also find substantial differences between our
in-medium cross sections and phenomenological parametrizations that are
commonly used in heavy-ion reactions.Comment: 9 pages of RevTex and 4 figures (postscript in separate uuencoded
file), UI-NTH-930
Space Alignment Based on Regularized Inversion Precoding in Cognitive Transmission
For a two-tier Multiple-Input Multiple-Output (MIMO) cognitive network with common receiver, the precoding matrix has a compact relationship with the capacity performance in the unlicensed secondary system. To increase the capacity of secondary system, an improved precoder based on the idea of regularized inversion for secondary transmitter is proposed. An iterative space alignment algorithm is also presented to ensure the Quality of Service (QoS) for primary system. The simulations reveal that, on the premise of achieving QoS for primary system, our proposed algorithm can get larger capacity in secondary system at low Signal-to-Noise Ratio (SNR), which proves the effectiveness of the algorithm
Space Charge Behaviour in Oil-Paper Insulation with Different Aging Condition
Oil-paper insulation system is widely used in power transformers and cables. The dielectric properties of oilpaper insulation play an important role in the reliable operation of power equipment. Oil-paper insulation degrades under a combined stress of thermal (the most important factor), electrical, mechanical, and chemical stresses during routine operations, which has great effect on the dielectric properties of oil-paper insulation [1]. Space charge in oil-paper insulation has a close relation to its electrical performance [1]. In this paper, space charge behaviour of oil-paper insulation sample with three different ageing conditions (aged for 0, 35 and 77 days) was investigated using the pulsed electroacoustic (PEA) technique. The influence of aging on the space charge dynamics behaviour was analysed. Results show that aging has great effect on the space charge dynamics of oil-paper insulation. The homocharge injection takes place under all three aging conditions above. Positive charges tend to accumulate in the sample, and increase with the oil-paper insulation sample deterioration. The time to achieve the maximum injection charge density is 30s, 2min and 10min for oil-paper insulation sample aged for 0, 35 and 77 days, respectively. The maximum charge density injected in the sample aged for 77 days is more than two times larger than the initial sample. In addition, the charge decay speed becomes much slower with the aging time increase. There is an exponential relationship between the total charge amount and the decay time. The decay time constant ? increases with the increasing deterioration condition of the oil-paper insulation sample. The ? value may be used to reflect the aging status of oil-paper insulation
Momentum-Dependent Mean Field Based Upon the Dirac-Brueckner Approach for Nuclear Matter
A momentum-dependent mean field potential, suitable for application in the
transport-model description of nucleus-nucleus collisions, is derived in a
microscopic way. The derivation is based upon the Bonn meson-exchange model for
the nucleon-nucleon interaction and the Dirac-Brueckner approach for nuclear
matter. The properties of the microscopic mean field are examined and compared
with phenomenological parametrizations which are commonly used in
transport-model calculations.Comment: 15 pages text (RevTex) and 4 figures (postscript in a separate
uuencoded file), UI-NTH-930
- …